POLYMETACRYLATE (POLMETAKRLAT)

Table of Contents

POLYMETACRYLATE (POLMETAKRLAT)

POLYMETACRYLATE

CAS NO:25087-26-7

METATAGS:POLYMETACRYLATE; 2-methyl-2-propenoicacihomopolymer;2-Propenoicacid,2-methyl-,homopolymer;anaerobicadhesive(gy-168);anaerobicadhesive(gy-340);METHACRYLIC ACID POLYMER;POLYMETHACRYLATE;POLYMETHACRYLATE MICRO PARTICLES;POLY(METHACRYLIC ACID);Polymethyl methacrylate. Also: a salt or ester of polymethacrylic acid; a polymer of an ester of methacrylic acid; Polymethacrylic acid; Poly(methacrylic acid), Poly(methacrylic acid) ; Poly(methacrylic acid); Poly(methacrylic acid); Polymethacrylate
; Polymethacrylic acid; Polymethacrylic acid; POLYMETHACRYLATE;POLY(METHACRYLIC ACID);METHACRYLIC ACID POLYMER;anaerobicadhesive(gy-340);anaerobicadhesive(gy-168);methacrylic acid homopolymer;POLYMETHACRYLATE MICRO PARTICLES;2-methyl-2-propenoicacihomopolymer;2-Propenoicacid,2-methyl-,homopolymer;2-methyl-2-propenoic acid homopolymer; 2-methyl-2-propenoicacihomopolymer; 2-Propenoicacid,2-methyl-,homopolymer; anaerobicadhesive(gy-168); anaerobicadhesive(gy-340); METHACRYLIC ACID POLYMER; POLYMETHACRYLATE; POLYMETHACRYLATE MICRO PARTICLES; POLY(METHACRYLIC ACID); METAKRLK AST; metakrilik asit; metakrilat; meta akrilat; polymetakrilat; polimetakrilat; polimethacrilat; polimethacrylate; polimeteacrilat.

 

 

 

 

 

 

PMA (Polymethacrylate)
Lubrizol Polymethacrylate (PMA) polymers are often used in high performance industrial and driveline lubricants. PMA polymers provide very good viscosity index increase, are shear stable and have excellent low temperature fluidity which is important for automatic transmission, gear oils and multi-viscosity hydraulic fluids. Functionalized PMAs with amine dispersants boost a lubricant’s oxidation and cleanliness performance.

The viscosity and rheological properties of the dispersive polymethacrylic additives of ubricating oils are investigated in this paper. Polymeric additives are synthesized by copolymerization of styrene, long-chain alkyl methacrylates and a functional comonomer that contributes to the dispersive properties,1,2,8 dimethylaminoethyl methacrylate, in mineral base oil. Free-radical mechanism was handed in isothermal reactions where peroxy initiator was used. Viscosity of diluted solutions of homopolymeric constituents of investigated additives in a modal solvent, toluene, was investigated in detail, in order to assess polymer / solvent molecular interactions, and, thereby a more detailed description of rheological properties.

Insight into the supramolecular structure formed by a polymethacrylate with a highly tapered side chain is obtained from parallel X-ray analysis of oriented fibers of the polymer and its monomeric precursor. The polymer is poly(2-{2-[2-(2-methacryloyloxyethoxy)ethoxy]ethoxy}ethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate) (abbreviated to 12-ABG-4EO-PMA); the monomeric precursor is the hydroxy-terminated side chain 2-{2-[2-(2-hydroxyethoxy)-ethoxy]ethoxy}ethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate (12-ABG-4EO-OH). The polymer and precursor both form ordered solid state structures that are converted to columnar hexagonal liquid crystalline (φh) phases at approximately 40°C and 50°C, respectively. The ordered solid state structures consist of ordered hexagonally packed cylindrical columns, in which the monomer units are probably packed with helical symmetry. For the polymer at 25°C, the column diameter is 60.4Å with an axial repeat of 5.03Å containing eight monomer units. For the precursor at 25°C, the column diameter is reduced to 53.5Å, probably due to the absence of the polymer backbone from the center of the column, and the axial repeat is doubled to 10.04Å. The X-ray data are compatible with a tighter winding of the monomers in a helical structure, but otherwise suggest that there are common features in the stacking of the aromatic groups in the two structures.

Polymethacrylates are an important class of materials possessing a wide range of properties. Extensive studies by laboratories around the globe have lead to the discovery of many commercial applications for polymethacrylates spanning high-performance engineering plastics, energy storage materials, functional coatings, and biomaterials. More specifically, polymethacrylate derivatives have a long established role in biomedical devices and are utilized in restorative dental composites, contact lens materials, and bone cement. Here we present a review of polymethacrylate literature that demonstrates the evolution of combined combinatorial synthetic and high-throughput screening methodologies in the correlation of structure-property relationships for the discovery and evaluation of new materials. We focus on the field of biomaterials and the development of computational modeling tools for the prediction of polymer properties and bio-response.

Polymethacrylates as materials
In 1880, poly(methacrylic acid) became the first reported methacrylate polymer to be synthesized. Forty-eight years later, poly(methyl methacrylate) (PMMA) was developed. PMMA was eventually marketed in 1933 and is now the world’s most widely produced methacrylate polymer. Today, worldwide annual production of methacrylate polymers exceeds 2 million metric tons.

Polymethacrylates are produced using free radical addition polymerization, one of the most widely used methods for the commercial production of high molecular weight polymers . In addition to being both cost effective and relatively simple to implement, free radical polymerization has the advantage of working with many monomer types and functional groups. Free radical polymerization of methacrylates is conducted by a variety of different methods, including bulk, solution, suspension, and emulsion. In general, the mechanism of free radical addition polymerization involves formation of free radicals from an initiator species, reaction of the free radical with monomer to form a radical monomer species, and subsequent propagation to high polymer by repeated addition of monomer to the growing radical chain. Polymerization is terminated by radical-radical reaction through coupling or disproportionation.

 

 

 

 

 

 

PMA (Polimetakrilat)
Lubrizol Polimetakrilat (PMA) polimerler genellikle yüksek performansl endüstriyel ve aktarma organlar yalayclarnda kullanlr. PMA polimerleri çok iyi viskozite indeksi art salar, kesilmezdir ve otomatik anzman, dili yalar ve çok viskoziteli hidrolik svlar için önemli olan mükemmel düük scaklkta akkanla sahiptir. Amin dispersanlar içeren ilevselletirilmi PMA’lar, bir yalayc maddenin oksidasyon ve temizlik performansn artrr.

Bu makalede, yalama yalarnn dispersiyon polimetakrilik katklarnn viskozite ve reolojik özellikleri aratrlmtr. Polimerik katk maddeleri, stiren, uzun zincirli alkil metakrilatlarn ve mineral baz yandaki dispersiyon özelliklerine, 1,2,8 dimetilaminoetil metakrilata katkda bulunan bir fonksiyonel komonomerin kopolizasyonu ile sentezlenir. Peroksi balatc kullanlan izotermal reaksiyonlarda serbest radikal mekanizma elde edildi. Polimer / çözücü moleküler etkileimlerini ve dolaysyla reolojik özelliklerin daha ayrntl bir tanmn yapmak için, incelenen katklarn homopolimerik bileenlerinin seyreltilmi çözeltilerinin, bir tür çözücü, toluen içinde viskozitesi ayrntl olarak aratrlmtr.

Oldukça inceltilmi bir yan zincire sahip bir polimetakrilatn oluturduu supramoleküler yapy anlama, polimerin ve monomerik öncülünün yönlendirilmi liflerinin paralel X-n analizinden elde edilir. Polimer, poli (2- {2- [2- (2-metakriloiloksietoksi) etoksi] etoksi} etil 3,4,5-tris (p-dodesiloksibenziloksi) benzoat) (12-ABG-4EO-PMA olarak ksaltlr); Monomerik öncül hidroksi sonlanan yan zincirdir 2- {2- [2- (2-hidroksietoksi) -etoksi] etoksi} etil 3,4,5-tris (p-dodesiloksibenziloksi) benzoat (12-ABG-4EO-OH ). Polimer ve öncül, srasyla yaklak 40 ° C ve 50 ° C’de sütun alt altgen likit kristal (φh) fazlara dönütürülen sral kat hal yaplar oluturmaktadr. Sipari edilen kat hal yaplar, altgen halinde paketlenmi silindirik sütunlardan oluur ve monomer birimleri muhtemelen sarmal simetri ile paketlenmitir. 25 ° C’deki polimer için, sütun çap, sekiz monomer birimi içeren 5.03Å’lk bir eksenel tekrarla 60.4Å’tr. Prekürsör 25 ° C’de sütun çap, muhtemelen kolonun merkezinden polimer omurgasnn bulunmamas nedeniyle 53.5 ° ‘ye düürülür ve eksenel tekrar, 10.04 °’ ye iki katna çkarlr. X-n verileri, sarmal bir yapda monomerlerin sk bir ekilde sarlmas ile uyumludur, ancak aksi halde, iki yapdaki aromatik gruplarn istiflenmesinde ortak özellikler bulunduunu önermektedir.

Polimetakrilatlar geni bir özellik yelpazesine sahip önemli bir malzeme snfdr. Dünyann dört bir yanndaki laboratuvarlar tarafndan kapsaml çalmalar, yüksek performansl mühendislik plastikleri, enerji depolama malzemeleri, fonksiyonel kaplamalar ve biyomalzemeleri kapsayan polimetakrilatlarn birçok ticari uygulamasnn kefedilmesine yol açmtr. Daha spesifik olarak, polimetakrilat türevleri, biyomedikal cihazlarda uzun süredir kurulmu bir role sahiptir ve restoratif di kompozisyonlarnda, kontakt lens materyallerinde ve kemik çimentosunda kullanlr. Burada, yeni materyallerin kefi ve deerlendirilmesi için yap-özellik ilikilerinin korelasyonunda kombine kombinasyonel sentetik ve yüksek verimli tarama metodolojilerinin evrimini gösteren polimetakrilat literatürünün bir gözden geçirmesini sunuyoruz. Biyomalzemeler alanna ve polimer özelliklerinin ve biyo-tepki tahmini için hesaplama modelleme araçlarnn gelitirilmesine odaklanyoruz.

Malzemeler olarak polimetakrilatlar
1880’de poli (metakrilik asit) sentezlenecek ilk bildirilen metakrilat polimer oldu. Krk sekiz yl sonra, poli (metil metakrilat) (PMMA) gelitirildi. PMMA sonunda 1933 ylnda pazarland ve u anda dünyann en çok üretilen metakrilat polimeridir. Bugün, dünya çapnda yllk metakrilat polimer üretimi 2 milyon metrik tonu ayor.

Polimetakrilatlar, yüksek molekül arlkl polimerlerin ticari üretimi için en yaygn kullanlan yöntemlerden biri olan serbest radikal ekleme polimerizasyonu kullanlarak üretilmektedir. Hem maliyet açsndan hem de nispeten basit uygulanmasna ek olarak, serbest radikal polimerizasyonu pek çok monomer türü ve fonksiyonel grup ile çalma avantajna sahiptir. Metakrilatlarn serbest radikal polimerizasyonu hacim, çözelti, süspansiyon ve emülsiyon gibi çeitli yöntemlerle gerçekletirilir. Genel olarak, serbest radikal ilaveli polimerizasyon mekanizmas, bir balatc türünden serbest radikal oluumunu, radikal bir monomer türü oluturmak için serbest radikal ile monomer arasndaki reaksiyonu ve büyüyen radikal zincirine monomer tekrar eden ilavesi ile yüksek polimere ilerlemeyi içerir . Polimerizasyon, balanma veya orantszlatrma yoluyla radikal-radikal reaksiyonu ile sonlandrlr.

 

Explore: