THIOGLYCOLIC ACID (TOGLKOLK AST)
Thioglycolic acid (Tiyoglikolik Asit)
CAS No. : 68-11-1
EC No. : 200-677-4
Synonyms:
mercaptoacetic acid; thioglycolic acid; 68-11-1; 2-Thioglycolic acid; Acetic acid, mercapto-; Sulfanylacetic acid; 2-Mercaptoacetic acid; 2-sulfanylacetic acid; Thioglycollic acid; Thiovanic acid; Mercaptoessigsaeure; Glycolic acid, thio-; thioglycolate; Acide thioglycolique; Glycolic acid, 2-thio-; Mercaptoethanoic acid; USAF CB-35; 2-Mercaptoacetate; mercapto acetic acid; Kyselina thioglykolova; Kyselina merkaptooctova; thioglycolicacid; Thioglykolsaeure; alpha-Mercaptoacetic acid; Thioglycolic acid solution; Acetic acid, 2-mercapto-; Merkaptoessigsaeure; NSC 1894; .alpha.-Mercaptoacetic acid; Acide thioglycolique [French]; mercapto-acetic acid; UNII-7857H94KHM; Kyselina thioglykolova [Czech]; CCRIS 4873; Kyselina merkaptooctova [Czech]; HSDB 2702; EINECS 200-677-4; UN1940; BRN 0506166; AI3-24151; CHEMBL116455; CHEBI:30065; 7857H94KHM; NSC-1894; MFCD00004876; mercaptoacetic acid (thioglycolic acid); DSSTox_CID_6141; Mercaptoacetic acid, 98%; DSSTox_RID_78033; DSSTox_GSID_26141; CAS-68-11-1; mercaptoactic acid; 2-mercaptoaceticacid; Sulfanylacetic acid #; HSCH2COOH; HSCH2CO2H; WLN: SH1VQ; EC 200-677-4; ACMC-1BG92; Thioglycolic acid, >=97%; Thioglycolic acid, >=98%; Thioglycolic acid, >=99%; 4-03-00-00600 (Beilstein Handbook Reference); KSC492E2P; AMMONIUM THIOGLY- COLATE; DTXSID8026141; Thioglycolic acid, LR, ~80%; CTK3J2227; CWERGRDVMFNCDR-UHFFFAOYSA-; NSC1894; STR00166; ZINC4658574; Tox21_201717; Tox21_303306; ANW-13583; BDBM50336509; STL264219; AKOS000118940; DB15429; LS-1576; MCULE-8097997001; Thioglycolic acid, for synthesis, 97%; UN 1940; KS-000015P9; NCGC00249103-01; NCGC00257153-01; NCGC00259266-01; NCI60_001579; SC-18319; Thioglycolic acid [UN1940] [Corrosive]; DB-002789; Thioglycolic acid [UN1940] [Corrosive]; FT-0628213; FT-0651867; M0052; NS00003173; 8847-EP2292595A1; 8847-EP2295415A1; 8847-EP2308839A1; 8847-EP2316824A ; C02086; 102887-EP2301938A1; 119037-EP2272817A1; 119037-EP2272843A1; 119037-EP2281817A1; 119037-EP2287155A1; 119037-EP2287160A1; 119037-EP2292597A1; 119037-EP2295414A1; 119037-EP2298756A1; 119037-EP2374786A1; Q414738; Thioglycolic acid solution, ~70 % (w/w) in H2O; F2191-0214; Thioglycolic acid solution, ~80% in H2O, for spectrophotometric det. of palladium, iron, uranium(VI), molybdates and nitrites; Thioglycolic acid; Tiyoglikolik Asit; tioglikolik asit; tioglik asit; THIGLYCOLIK ACID; TIGLYCOLIC ACID; TIOGYLIC ACID; GLYCOLIC ACID; thiglicolic acid; mercaptoacetic acid; thioglycolic acid; 68-11-1; 2-Thioglycolic acid; Acetic acid, mercapto-; Sulfanylacetic acid; 2-Mercaptoacetic acid; 2-sulfanylacetic acid; Thioglycollic acid; Thiovanic acid; Mercaptoessigsaeure; Glycolic acid, thio-; thioglycolate; Acide thioglycolique; Glycolic acid, 2-thio-; Mercaptoethanoic acid; USAF CB-35; 2-Mercaptoacetate; mercapto acetic acid; Kyselina thioglykolova; Kyselina merkaptooctova; thioglycolicacid; Thioglykolsaeure; alpha-Mercaptoacetic acid; Thioglycolic acid solution; Acetic acid, 2-mercapto-; Merkaptoessigsaeure; NSC 1894; .alpha.-Mercaptoacetic acid; Acide thioglycolique [French]; mercapto-acetic acid; UNII-7857H94KHM; Kyselina thioglykolova [Czech]; CCRIS 4873; Kyselina merkaptooctova [Czech]; HSDB 2702; EINECS 200-677-4; UN1940; BRN 0506166; AI3-24151; CHEMBL116455; CHEBI:30065; 7857H94KHM; NSC-1894; MFCD00004876; mercaptoacetic acid (thioglycolic acid); DSSTox_CID_6141; Mercaptoacetic acid, 98%; DSSTox_RID_78033; DSSTox_GSID_26141; CAS-68-11-1; mercaptoactic acid; 2-mercaptoaceticacid; Sulfanylacetic acid #; HSCH2COOH; HSCH2CO2H; WLN: SH1VQ; EC 200-677-4; ACMC-1BG92; Thioglycolic acid, >=97%; Thioglycolic acid, >=98%; Thioglycolic acid, >=99%; 4-03-00-00600 (Beilstein Handbook Reference); KSC492E2P; AMMONIUM THIOGLY- COLATE; DTXSID8026141; Thioglycolic acid, LR, ~80%; CTK3J2227; CWERGRDVMFNCDR-UHFFFAOYSA-; NSC1894; STR00166; ZINC4658574; Tox21_201717; Tox21_303306; ANW-13583; BDBM50336509; STL264219; AKOS000118940; DB15429; LS-1576; MCULE-8097997001; Thioglycolic acid, for synthesis, 97%; UN 1940; KS-000015P9; NCGC00249103-01; NCGC00257153-01; NCGC00259266-01; NCI60_001579; SC-18319; Thioglycolic acid [UN1940] [Corrosive]; DB-002789; Thioglycolic acid [UN1940] [Corrosive]; FT-0628213; FT-0651867; M0052; NS00003173; 8847-EP2292595A1; 8847-EP2295415A1; 8847-EP2308839A1; 8847-EP2316824A ; C02086; 102887-EP2301938A1; 119037-EP2272817A1; 119037-EP2272843A1; 119037-EP2281817A1; 119037-EP2287155A1; 119037-EP2287160A1; 119037-EP2292597A1; 119037-EP2295414A1; 119037-EP2298756A1; 119037-EP2374786A1; Q414738; Thioglycolic acid solution, ~70 % (w/w) in H2O; F2191-0214; Thioglycolic acid solution, ~80% in H2O, for spectrophotometric det. of palladium, iron, uranium(VI), molybdates and nitrites; Thioglycolic acid; Tiyoglikolik Asit; tioglikolik asit; tioglik asit; THIGLYCOLIK ACID; TIGLYCOLIC ACID; TIOGYLIC ACID; GLYCOLIC ACID; thiglicolic acid; mercaptoacetic acid; thioglycolic acid; 68-11-1; 2-Thioglycolic acid; Acetic acid, mercapto-; Sulfanylacetic acid; 2-Mercaptoacetic acid; 2-sulfanylacetic acid; Thioglycollic acid; Thiovanic acid; Mercaptoessigsaeure; Glycolic acid, thio-; thioglycolate; Acide thioglycolique; Glycolic acid, 2-thio-; Mercaptoethanoic acid; USAF CB-35; 2-Mercaptoacetate; mercapto acetic acid; Kyselina thioglykolova; Kyselina merkaptooctova; thioglycolicacid; Thioglykolsaeure; alpha-Mercaptoacetic acid; Thioglycolic acid solution; Acetic acid, 2-mercapto-; Merkaptoessigsaeure; NSC 1894; .alpha.-Mercaptoacetic acid; Acide thioglycolique [French]; mercapto-acetic acid; UNII-7857H94KHM; Kyselina thioglykolova [Czech]; CCRIS 4873; Kyselina merkaptooctova [Czech]; HSDB 2702; EINECS 200-677-4; UN1940; BRN 0506166; AI3-24151; CHEMBL116455; CHEBI:30065; 7857H94KHM; NSC-1894; MFCD00004876; mercaptoacetic acid (thioglycolic acid); DSSTox_CID_6141; Mercaptoacetic acid, 98%; DSSTox_RID_78033; DSSTox_GSID_26141; CAS-68-11-1; mercaptoactic acid; 2-mercaptoaceticacid; Sulfanylacetic acid #; HSCH2COOH; HSCH2CO2H; WLN: SH1VQ; EC 200-677-4; ACMC-1BG92; Thioglycolic acid, >=97%; Thioglycolic acid, >=98%; Thioglycolic acid, >=99%; 4-03-00-00600 (Beilstein Handbook Reference); KSC492E2P; AMMONIUM THIOGLY- COLATE; DTXSID8026141; Thioglycolic acid, LR, ~80%; CTK3J2227; CWERGRDVMFNCDR-UHFFFAOYSA-; NSC1894; STR00166; ZINC4658574; Tox21_201717; Tox21_303306; ANW-13583; BDBM50336509; STL264219; AKOS000118940; DB15429; LS-1576; MCULE-8097997001; Thioglycolic acid, for synthesis, 97%; UN 1940; KS-000015P9; NCGC00249103-01; NCGC00257153-01; NCGC00259266-01; NCI60_001579; SC-18319; Thioglycolic acid [UN1940] [Corrosive]; DB-002789; Thioglycolic acid [UN1940] [Corrosive]; FT-0628213; FT-0651867; M0052; NS00003173; 8847-EP2292595A1; 8847-EP2295415A1; 8847-EP2308839A1; 8847-EP2316824A ; C02086; 102887-EP2301938A1; 119037-EP2272817A1; 119037-EP2272843A1; 119037-EP2281817A1; 119037-EP2287155A1; 119037-EP2287160A1; 119037-EP2292597A1; 119037-EP2295414A1; 119037-EP2298756A1; 119037-EP2374786A1; Q414738; Thioglycolic acid solution, ~70 % (w/w) in H2O; F2191-0214; Thioglycolic acid solution, ~80% in H2O, for spectrophotometric det. of palladium, iron, uranium(VI), molybdates and nitrites; Thioglycolic acid; Tiyoglikolik Asit; tioglikolik asit; tioglik asit; THIGLYCOLIK ACID; TIGLYCOLIC ACID; TIOGYLIC ACID; GLYCOLIC ACID; thiglicolic acid; mercaptoacetic acid; thioglycolic acid; 68-11-1; 2-Thioglycolic acid; Acetic acid, mercapto-; Sulfanylacetic acid; 2-Mercaptoacetic acid; 2-sulfanylacetic acid; Thioglycollic acid; Thiovanic acid; Mercaptoessigsaeure; Glycolic acid, thio-; thioglycolate; Acide thioglycolique; Glycolic acid, 2-thio-; Mercaptoethanoic acid; USAF CB-35; 2-Mercaptoacetate; mercapto acetic acid; Kyselina thioglykolova; Kyselina merkaptooctova; thioglycolicacid; Thioglykolsaeure; alpha-Mercaptoacetic acid; Thioglycolic acid solution; Acetic acid, 2-mercapto-; Merkaptoessigsaeure; NSC 1894; .alpha.-Mercaptoacetic acid; Acide thioglycolique [French]; mercapto-acetic acid; UNII-7857H94KHM; Kyselina thioglykolova [Czech]; CCRIS 4873; Kyselina merkaptooctova [Czech]; HSDB 2702; EINECS 200-677-4; UN1940; BRN 0506166; AI3-24151; CHEMBL116455; CHEBI:30065; 7857H94KHM; NSC-1894; MFCD00004876; mercaptoacetic acid (thioglycolic acid); DSSTox_CID_6141; Mercaptoacetic acid, 98%; DSSTox_RID_78033; DSSTox_GSID_26141; CAS-68-11-1; mercaptoactic acid; 2-mercaptoaceticacid; Sulfanylacetic acid #; HSCH2COOH; HSCH2CO2H; WLN: SH1VQ; EC 200-677-4; ACMC-1BG92; Thioglycolic acid, >=97%; Thioglycolic acid, >=98%; Thioglycolic acid, >=99%; 4-03-00-00600 (Beilstein Handbook Reference); KSC492E2P; AMMONIUM THIOGLY- COLATE; DTXSID8026141; Thioglycolic acid, LR, ~80%; CTK3J2227; CWERGRDVMFNCDR-UHFFFAOYSA-; NSC1894; STR00166; ZINC4658574; Tox21_201717; Tox21_303306; ANW-13583; BDBM50336509; STL264219; AKOS000118940; DB15429; LS-1576; MCULE-8097997001; Thioglycolic acid, for synthesis, 97%; UN 1940; KS-000015P9; NCGC00249103-01; NCGC00257153-01; NCGC00259266-01; NCI60_001579; SC-18319; Thioglycolic acid [UN1940] [Corrosive]; DB-002789; Thioglycolic acid [UN1940] [Corrosive]; FT-0628213; FT-0651867; M0052; NS00003173; 8847-EP2292595A1; 8847-EP2295415A1; 8847-EP2308839A1; 8847-EP2316824A ; C02086; 102887-EP2301938A1; 119037-EP2272817A1; 119037-EP2272843A1; 119037-EP2281817A1; 119037-EP2287155A1; 119037-EP2287160A1; 119037-EP2292597A1; 119037-EP2295414A1; 119037-EP2298756A1; 119037-EP2374786A1; Q414738; Thioglycolic acid solution, ~70 % (w/w) in H2O; F2191-0214; Thioglycolic acid solution, ~80% in H2O, for spectrophotometric det. of palladium, iron, uranium(VI), molybdates and nitrites; Thioglycolic acid; Tiyoglikolik Asit; tioglikolik asit; tioglik asit; THIGLYCOLIK ACID; TIGLYCOLIC ACID; TIOGYLIC ACID; GLYCOLIC ACID; thiglicolic acid; mercaptoacetic acid; thioglycolic acid; 68-11-1; 2-Thioglycolic acid; Acetic acid, mercapto-; Sulfanylacetic acid; 2-Mercaptoacetic acid; 2-sulfanylacetic acid; Thioglycollic acid; Thiovanic acid; Mercaptoessigsaeure; Glycolic acid, thio-; thioglycolate; Acide thioglycolique; Glycolic acid, 2-thio-; Mercaptoethanoic acid; USAF CB-35; 2-Mercaptoacetate; mercapto acetic acid; Kyselina thioglykolova; Kyselina merkaptooctova; thioglycolicacid; Thioglykolsaeure; alpha-Mercaptoacetic acid; Thioglycolic acid solution; Acetic acid, 2-mercapto-; Merkaptoessigsaeure; NSC 1894; .alpha.-Mercaptoacetic acid; Acide thioglycolique [French]; mercapto-acetic acid; UNII-7857H94KHM; Kyselina thioglykolova [Czech]; CCRIS 4873; Kyselina merkaptooctova [Czech]; HSDB 2702; EINECS 200-677-4; UN1940; BRN 0506166; AI3-24151; CHEMBL116455; CHEBI:30065; 7857H94KHM; NSC-1894; MFCD00004876; mercaptoacetic acid (thioglycolic acid); DSSTox_CID_6141; Mercaptoacetic acid, 98%; DSSTox_RID_78033; DSSTox_GSID_26141; CAS-68-11-1; mercaptoactic acid; 2-mercaptoaceticacid; Sulfanylacetic acid #; HSCH2COOH; HSCH2CO2H; WLN: SH1VQ; EC 200-677-4; ACMC-1BG92; Thioglycolic acid, >=97%; Thioglycolic acid, >=98%; Thioglycolic acid, >=99%; 4-03-00-00600 (Beilstein Handbook Reference); KSC492E2P; AMMONIUM THIOGLY- COLATE; DTXSID8026141; Thioglycolic acid, LR, ~80%; CTK3J2227; CWERGRDVMFNCDR-UHFFFAOYSA-; NSC1894; STR00166; ZINC4658574; Tox21_201717; Tox21_303306; ANW-13583; BDBM50336509; STL264219; AKOS000118940; DB15429; LS-1576; MCULE-8097997001; Thioglycolic acid, for synthesis, 97%; UN 1940; KS-000015P9; NCGC00249103-01; NCGC00257153-01; NCGC00259266-01; NCI60_001579; SC-18319; Thioglycolic acid [UN1940] [Corrosive]; DB-002789; Thioglycolic acid [UN1940] [Corrosive]; FT-0628213; FT-0651867; M0052; NS00003173; 8847-EP2292595A1; 8847-EP2295415A1; 8847-EP2308839A1; 8847-EP2316824A ; C02086; 102887-EP2301938A1; 119037-EP2272817A1; 119037-EP2272843A1; 119037-EP2281817A1; 119037-EP2287155A1; 119037-EP2287160A1; 119037-EP2292597A1; 119037-EP2295414A1; 119037-EP2298756A1; 119037-EP2374786A1; Q414738; Thioglycolic acid solution, ~70 % (w/w) in H2O; F2191-0214; Thioglycolic acid solution, ~80% in H2O, for spectrophotometric det. of palladium, iron, uranium(VI), molybdates and nitrites; Thioglycolic acid; Tiyoglikolik Asit; tioglikolik asit; tioglik asit; THIGLYCOLIK ACID; TIGLYCOLIC ACID; TIOGYLIC ACID; GLYCOLIC ACID; thiglicolic acid; mercaptoacetic acid; thioglycolic acid; 68-11-1; 2-Thioglycolic acid; Acetic acid, mercapto-; Sulfanylacetic acid; 2-Mercaptoacetic acid; 2-sulfanylacetic acid; Thioglycollic acid; Thiovanic acid; Mercaptoessigsaeure; Glycolic acid, thio-; thioglycolate; Acide thioglycolique; Glycolic acid, 2-thio-; Mercaptoethanoic acid; USAF CB-35; 2-Mercaptoacetate; mercapto acetic acid; Kyselina thioglykolova; Kyselina merkaptooctova; thioglycolicacid; Thioglykolsaeure; alpha-Mercaptoacetic acid; Thioglycolic acid solution; Acetic acid, 2-mercapto-; Merkaptoessigsaeure; NSC 1894; .alpha.-Mercaptoacetic acid; Acide thioglycolique [French]; mercapto-acetic acid; UNII-7857H94KHM; Kyselina thioglykolova [Czech]; CCRIS 4873; Kyselina merkaptooctova [Czech]; HSDB 2702; EINECS 200-677-4; UN1940; BRN 0506166; AI3-24151; CHEMBL116455; CHEBI:30065; 7857H94KHM; NSC-1894; MFCD00004876; mercaptoacetic acid (thioglycolic acid); DSSTox_CID_6141; Mercaptoacetic acid, 98%; DSSTox_RID_78033; DSSTox_GSID_26141; CAS-68-11-1; mercaptoactic acid; 2-mercaptoaceticacid; Sulfanylacetic acid #; HSCH2COOH; HSCH2CO2H; WLN: SH1VQ; EC 200-677-4; ACMC-1BG92; Thioglycolic acid, >=97%; Thioglycolic acid, >=98%; Thioglycolic acid, >=99%; 4-03-00-00600 (Beilstein Handbook Reference); KSC492E2P; AMMONIUM THIOGLY- COLATE; DTXSID8026141; Thioglycolic acid, LR, ~80%; CTK3J2227; CWERGRDVMFNCDR-UHFFFAOYSA-; NSC1894; STR00166; ZINC4658574; Tox21_201717; Tox21_303306; ANW-13583; BDBM50336509; STL264219; AKOS000118940; DB15429; LS-1576; MCULE-8097997001; Thioglycolic acid, for synthesis, 97%; UN 1940; KS-000015P9; NCGC00249103-01; NCGC00257153-01; NCGC00259266-01; NCI60_001579; SC-18319; Thioglycolic acid [UN1940] [Corrosive]; DB-002789; Thioglycolic acid [UN1940] [Corrosive]; FT-0628213; FT-0651867; M0052; NS00003173; 8847-EP2292595A1; 8847-EP2295415A1; 8847-EP2308839A1; 8847-EP2316824A ; C02086; 102887-EP2301938A1; 119037-EP2272817A1; 119037-EP2272843A1; 119037-EP2281817A1; 119037-EP2287155A1; 119037-EP2287160A1; 119037-EP2292597A1; 119037-EP2295414A1; 119037-EP2298756A1; 119037-EP2374786A1; Q414738; Thioglycolic acid solution, ~70 % (w/w) in H2O; F2191-0214; Thioglycolic acid solution, ~80% in H2O, for spectrophotometric det. of palladium, iron, uranium(VI), molybdates and nitrites; Thioglycolic acid; Tiyoglikolik Asit; tioglikolik asit; tioglik asit; THIGLYCOLIK ACID; TIGLYCOLIC ACID; TIOGYLIC ACID; GLYCOLIC ACID; thiglicolic acid;
EN
Thioglycolic acid (Tiyoglikolik Asit) IUPAC Name 2-sulfanylacetic acid
Thioglycolic acid (Tiyoglikolik Asit) InChI InChI=1S/C2H4O2S/c3-2(4)1-5/h5H,1H2,(H,3,4)
Thioglycolic acid (Tiyoglikolik Asit) InChI Key CWERGRDVMFNCDR-UHFFFAOYSA-N
Thioglycolic acid (Tiyoglikolik Asit) Canonical SMILES C(C(=O)O)S
Thioglycolic acid (Tiyoglikolik Asit) Molecular Formula C2H4O2S
Thioglycolic acid (Tiyoglikolik Asit) CAS 68-11-1
Thioglycolic acid (Tiyoglikolik Asit) Deprecated CAS 57755-20-1, 7283-42-3
Thioglycolic acid (Tiyoglikolik Asit) European Community (EC) Number 200-677-4
Thioglycolic acid (Tiyoglikolik Asit) ICSC Number 0915
Thioglycolic acid (Tiyoglikolik Asit) NSC Number 1894
Thioglycolic acid (Tiyoglikolik Asit) RTECS Number AI5950000
Thioglycolic acid (Tiyoglikolik Asit) UN Number 1940
Thioglycolic acid (Tiyoglikolik Asit) UNII 7857H94KHM
Thioglycolic acid (Tiyoglikolik Asit) DSSTox Substance ID DTXSID8026141
Thioglycolic acid (Tiyoglikolik Asit) Physical Description Liquid
Thioglycolic acid (Tiyoglikolik Asit) Color/Form Colorless liquid
Thioglycolic acid (Tiyoglikolik Asit) Odor Strong, unpleasant odor
Thioglycolic acid (Tiyoglikolik Asit) Boiling Point 248 °F at 20 mm Hg
Thioglycolic acid (Tiyoglikolik Asit) Melting Point 2.3 °F
Thioglycolic acid (Tiyoglikolik Asit) Flash Point 235 °F
Thioglycolic acid (Tiyoglikolik Asit) Solubility greater than or equal to 100 mg/mL at 64° F
Thioglycolic acid (Tiyoglikolik Asit) Density 1.3253 at 68 °F
Thioglycolic acid (Tiyoglikolik Asit) Vapor Density 3.18 (Air = 1)
Thioglycolic acid (Tiyoglikolik Asit) Vapor Pressure 10 mm Hg at 64 °F
Thioglycolic acid (Tiyoglikolik Asit) LogP 0.09 (LogP)
Thioglycolic acid (Tiyoglikolik Asit) Stability/Shelf Life Stable under recommended storage conditions.
Thioglycolic acid (Tiyoglikolik Asit) Autoignition Temperature 350 °C
Thioglycolic acid (Tiyoglikolik Asit) Decomposition When heated to decomp it emits toxic fumes of /sulfur oxides/.
Thioglycolic acid (Tiyoglikolik Asit) Viscosity 6.55 mPa.s (= cP) at 20 °C
Thioglycolic acid (Tiyoglikolik Asit) Corrosivity Corrosive
Thioglycolic acid (Tiyoglikolik Asit) Heat of Combustion 1450 kJ/mol
Thioglycolic acid (Tiyoglikolik Asit) Heat of Vaporization 627.2 J/g
Thioglycolic acid (Tiyoglikolik Asit) Refractive Index Index of refraction: 1.5080 at 20 °C/D
Thioglycolic acid (Tiyoglikolik Asit) Dissociation Constants pKa = 3.55
Thioglycolic acid (Tiyoglikolik Asit) Molecular Weight 92.12 g/mol
Thioglycolic acid (Tiyoglikolik Asit) XLogP3 0.1
Thioglycolic acid (Tiyoglikolik Asit) Hydrogen Bond Donor Count 2
Thioglycolic acid (Tiyoglikolik Asit) Hydrogen Bond Acceptor Count 3
Thioglycolic acid (Tiyoglikolik Asit) Rotatable Bond Count 1
Thioglycolic acid (Tiyoglikolik Asit) Exact Mass 91.993201 g/mol
Thioglycolic acid (Tiyoglikolik Asit) Monoisotopic Mass 91.993201 g/mol
Thioglycolic acid (Tiyoglikolik Asit) Topological Polar Surface Area 38.3 Ų
Thioglycolic acid (Tiyoglikolik Asit) Heavy Atom Count 5
Thioglycolic acid (Tiyoglikolik Asit) Formal Charge 0
Thioglycolic acid (Tiyoglikolik Asit) Complexity 42.9
Thioglycolic acid (Tiyoglikolik Asit) Isotope Atom Count 0
Thioglycolic acid (Tiyoglikolik Asit) Defined Atom Stereocenter Count 0
Thioglycolic acid (Tiyoglikolik Asit) Undefined Atom Stereocenter Count 0
Thioglycolic acid (Tiyoglikolik Asit) Defined Bond Stereocenter Count 0
Thioglycolic acid (Tiyoglikolik Asit) Undefined Bond Stereocenter Count 0
Thioglycolic acid (Tiyoglikolik Asit) Covalently-Bonded Unit Count 1
Thioglycolic acid (Tiyoglikolik Asit) Compound Is Canonicalized Yes
Thioglycolic acid (Tiyoglikolik Asit) is the organic compound HSCH2CO2H. Thioglycolic acid (Tiyoglikolik Asit) is often called mercaptoacetic acid (MAA). It contains both a thiol (mercaptan) and carboxylic acid functional groups. It is a colorless liquid with a strongly unpleasant odor. Thioglycolic acid (Tiyoglikolik Asit) is miscible with polar organic solvents.Thioglycolic acid (Tiyoglikolik Asit) is used as a chemical depilatory and is still used as such, especially in salt forms, including calcium thioglycolate and sodium thioglycolate. Thioglycolic acid (Tiyoglikolik Asit) is the precursor to ammonium thioglycolate that is used for permanents. Thioglycolic acid (Tiyoglikolik Asit) and its derivatives break the disulfide bonds in the cortex of hair. One reforms these broken bonds in giving hair a “perm.” Alternatively and more commonly, the process leads to depilation as is done commonly in leather processing. It is also used as an acidity indicator, manufacturing of thioglycolates, and in bacteriology for preparation of thioglycolate media.[5] In fact thioglycolysis reactions used on condensed tannins to study their structure.Organotin derivatives of thioglycolic acid isooctyl esters are widely used as stabilizers for PVC. These species have the formula R2Sn(SCH2CO2C8H17)2.Applying Thioglycolic acid (Tiyoglikolik Asit) can soften nails and then fix pincer nails in the correct position.Sodium thioglycolate is a component of a special bacterial growth media : thioglycolate broth. It is also used in so-called “fallout remover”[6] or “wheel cleaner” to remove iron oxide residue from rims.[7] Ferrous iron combines with thioglycolate to form red-violet[8] ferric thioglycolate.Thioglycolic acid is prepared by reaction of sodium or potassium chloracetate with alkali metal hydrosulfide in aqueous medium.[11] It can be also prepared via the Bunte salt obtained by reaction of sodium thiosulfate with chloroacetic acid:[5][12]Thioglycolic acid, usually as its dianion, forms complexes with metal ions. Such complexes have been used for the detection of iron, molybdenum, silver, and tin. Thioglycolic acid reacts with diethyl acetylmalonate to form acetylmercaptoacetic acid and diethyl malonate, the reducing agent in conversion of Fe(III) to Fe(II).Thioglycolic acid :Understanding the risk of Specific Chemicals of Interest Thioglycolic acid can cause severe burns and chemical injuries when it enters in contact with the skin, eye, digestive or respiratory tracts. It is corrosive and can even induce a systemic toxicity.However, thioglycolic acid is still widely used in domestic products such as depilatory creams and by hairdressers for “perms”. Let’s understand the risk it presents.Thioglycolic acid is a colorless liquid with a strong, typical mercaptan disagreeable odor (although olfactory fatigue may occur) which is used in cosmetic formulations including permanent wave solutions and depilatories, in pharmaceutical manufacture, and as a stabilizer for vinyl plastics. A recent use is as a capping or stabilizing agent for Cd/Te quantum microdots (QDs). It is a member of the thioglycolate chemical class.Thioglycolic acid is a reactive reducing agent: it is readily oxidized on exposure to air. Thioglycolic acid is also a weak acid due to the presence of a carboxylic acid function in the molecule.Because of its high reactivity, it is incompatible with air, strong oxidizers, bases, active metals such as sodium, potassium, magnesium, and calcium (for examples).Thioglycolic acid is considered to be a Class IIIB Combustible Liquid, therefore, it is not considered to be flammable.Thioglycolic acid is a contact irritant or corrosive substance of the eyes, skin, and mucous membranes.It is known to cause severe skin burns and eye damages. The European Chemical Agency (ECHA) recommends to label it with the H314 risk phrase. (full classification) In case of cutaneous or ocular exposure to thioglycolic acid, corneal damage and chemical skin injury with blister formation has occurred.In one reported case where thioglycolic acid liquid was splashed into the eyes bilaterally and also on the skin of the face, legs, and arms, second-degree (blistering) injury of the skin areas occurred. By two hours, the corneas were clouded (one worse than the other) and the conjunctiva was edematous. It took several months for the corneas and conjunctiva to heal, and some vascularization occurred resulting in mild visual impairment.Experimental animal studies have shown significant eye and skin lesions from direct contact. Additionally, the thioglycolates class has been shown to be rapidly absorbed through the skin in experimental animals, resulting in systemic toxicity.This is somewhat corroborated by a single case report of a 79-year-old woman who developed significant systemic toxicity including toxic pulmonary edema, and sequelae of hemorrhagic fibrinous tracheobronchitis, acute respiratory distress syndrome (ARDS), lactic acidosis, kidney and liver failure, rhabdomyolysis, and bleeding from the mucous membranes following exposure to a home permanent waving solution containing thioglycolic acid. This exposure, however, may have been primaryily by inhalation rather than dermal contact.Thioglycolic acid also presents liver and digestive tract toxicity when it is ingested.As part of cosmetic formulations, thioglycolic acid has been associated with development of irritant or allergic contact dermatitis, particularly amongst hairdressers exposed chronically.Thioglycolic acid was not mutagenic in various Salmonella tyhrimurium strains with or without metabolic activation.There is currently no evidence that thioglycolic acid is a carcinogen.A series of preliminary tests in which an attempt was made to agglomerate sulfurized mineral pyrite in the presence of an agglomeration suppressant showed that the following materials were effective suppressants: Thioglycolic acid (Tiyoglikolik Asit), thiolactic acid (TLA), mercaptosuccinic acid (MSA), 3-mercaptopropionic acid (MPA), and 2-mercapto-ethane-sulfonic acid (MES). Typical results are indicated in Fig. 1 for sulfurized mineral pyrite in the presence of different concentrations of Thioglycolic acid (Tiyoglikolik Asit) at pH 4.5. A baseline experiment conducted without Thioglycolic acid (Tiyoglikolik Asit) showed that the pyrite was agglomerated readily with heptane since the turbidity of the particle suspension decreased steadily as the heptane dosag increased. In the presence of 0.0002 M Thioglycolic acid (Tiyoglikolik Asit), the turbidity was greater than without Thioglycolic acid (Tiyoglikolik Asit), indicating that the particles were dispersed more completely. However, the turbidity still decreased as increasing amounts of heptane were added, which showed that agglomeration was occurring. But in the presence of 0.001 M and larger concentrations of Thioglycolic acid (Tiyoglikolik Asit), the turbidity only increased as more heptane was added. This trend was due apparently to the dispersion of heptane droplets in the aqueous suspension which meant that the heptane was not adhering to the pyrite. Similar results were obtained at pH 7.5 and pH 10.4 except that a Thioglycolic acid (Tiyoglikolik Asit) concentration of only 0.0002 M was sufficient to prevent agglomeration. Similar results were also realized with sulfurized coal-derived pyrite. A baseline experiment showed that this material was readily agglomerated without a suppressant, whereas agglomeration was suppressed by Thioglycolic acid (Tiyoglikolik Asit).In order to study the macromolecular properties of lignin such as molecular weight, density, shape, crystallinity, etc. a detailed structural analysis is required. This is generally done by using various nondegradative techniques that make use of various chemicals such as Thioglycolic acid (Tiyoglikolik Asit) and ACBR which add functional groups to lignin polymer, modify its properties, thereby allowing the quantification of the content/composition without disturbing the native structure of the polymer [42,43]. In these techniques, derivatization of lignin is first done by adding functional groups to the β-O′-4 units resulting in a change in its solubility. For further quantification, lignin is solubilized in appropriate solvents and the content is determined by using UV absorbance. Care must be taken to maintain the native structure of the polymer while performing derivatization and solubilization procedures. Later, the solubilized lignin is analyzed to study the size and conformation of polymer by size-exclusion chromatography. There are some limitations of using size-exclusion chromatography such as lengthy elution time and not so accurate molar mass determination as it is based on UV absorbance. Moreover, the detailed structure/conformation of the polymer cannot be studied accurately using UV absorption method alone [44]. Therefore, use of dynamic light scattering method has emerged. This method is based on the principle of illuminating the sample with a beam of laser light and the fluctuations of the scattered light are detected and analyzed at a known scattering angle by a fast photon detector that can determine the molar mass and shape distribution of the polymer accurately [44]. Therefore, the use of an appropriate extraction method which is nondegradative along with size-exclusion chromatography is used to determine the lignin structure.Proteins are successfully conjugated to the surface of nanoparticles via covalent bonding between the protein reactive moieties (such as carboxyl and amino groups) and the functional groups conferred by the capping agent of nanoparticles.Carbodiimide coupling is the most commonly used reaction for protein–nanoparticle conjugation via amide or ester bond formation. Arginine is employed to decorate the surface of iron oxide nanoparticles (IONPs) to provide free amine groups giving an opportunity for amide bond formation with the carboxylic groups of bovine serum albumin (BSA). Similarly, the carboxylic groups of both gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) complexes and thioglycolic acid-functionalized CdTe QDs (Thioglycolic acid (Tiyoglikolik Asit)-QDs) are conjugated via carbodiimide coupling to the amino groups of HSA and BSA, respectively. The use of ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) as a linker to conjugate Thioglycolic acid (Tiyoglikolik Asit)-QDs to BSA is found to be comparable to bifunctional crosslinkers, e.g., glutaraldehyde, while avoiding their toxicity. Conjugation efficiency can be enhanced by cationization of albumin by replacing the side-chain carboxylic groups with ethylenediamine followed by linking to the surface carboxylic groups of the citrate-capped magnetic nanoparticles (MNPs), thus elaborating albumin-magnetic nanohybrids. Common linkers like succinic anhydride is used to conjugate mesoporous silica nanoparticles (MSNs) to the proteins; gelatin, BSA, and lysozyme leading to fabrication of MSN–protein nanohybrids. Amino-functionalized MSNs are covalently decorated with succinic anhydride molecules producing carboxylated MSNs followed by protein immobilization via their amino groups onto the surface of carboxylated MSNs by carbodiimide coupling. Albumin and gelatin are coupled to MSNs in higher amounts compared to lysozyme, probably due to their higher molecular weight. Another technique thiol–maleimide coupling was also utilized to link thiolated proteins to the surface of maleimide-derivatized inorganic nanoparticles. Thiolated transferrin (Tf) was successfully attached to PEG–maleimide-activated HSA-Gd-DTPA nanoparticles with 84% Tf binding efficiency. Another conjugation method involves the formation of Schiff-base bonds between residual aldehyde groups on the surface of inorganic nanoparticles and amine groups of the proteins. Treatment of amine-modified MSNs with glutaraldehyde and further reaction of the resulting aldehyde-functionalized MSNs with gelatin leads to the fabrication of gelatin corona on the surface of MSNs [45].Thioglycolic acid and the ethers of glycolic acid may have the added benefits of a higher boiling point and possibly increased water solubility [11]. A higher boiling point means the additive will not distill into the distillate fractions in the crude unit and cause corrosion or product quality concerns. The higher water solubility also favors removal of the additive from the crude oil in the desalter and reduces the amount that may reach the downstream processing units. The addition of glycolic acid (ie, hydroxyacetic acid) and other water-soluble hydroxyacids to a crude oil can significantly reduce the amount of calcium and other metals and amines as well as reactive phosphorus species in the hydrocarbon when it is run through a desalter in a refinery [7].Toward this direction, Zhi, Bando, and Golberg have discovered that treatment of BNNTs in H2O2 introduces hydroxyl groups (single bondOH) to boron sites, while single bondNH to nitrogen sites [55]. These single bondOH groups were esterificated with perfluorobutyric acid (CF3CF2CF2COOH) and thioglycolic acid (HSCH2COOH), and employed for further chemical functionalization.Another unique advantage of using gold nanoparticles for the construction of electrochemical DNA biosensors is the development of amplification routes for the DNA sensing events. One of the earlier alternatives explored consisted of coupling the primary probe DNA recognition event with the use of a colloidal gold tag followed by label-free detection (i.e., using impedimetry). An illustrative example is the construction of an electrochemical DNA biosensor based on the assembly of highly conductive gold nanoparticles on the free terminal of hairpin-structured DNA probes. The bifunctional hairpin structure DNA probe with amino and thiol groups at the 3′- and 5′-ends, respectively, was immobilized on a gold electrode through the thiol group (Fig. 11.15). Then, thioglycolic acid (Thioglycolic acid (Tiyoglikolik Asit)) was grafted on the 3′-ends of hairpin DNA probes via the carboxylic-amino condensation reaction, and the gold nanoparticles tags were further attached on the free terminal of probe DNA through self-assembling with the SH of the modified Thioglycolic acid (Tiyoglikolik Asit). Thus a highly conductive biointerface with a significantly low electrochemical impedance background response in was constructed. Upon hybridization with complementary DNA the stem-loop portion of the hairpin DNA probe was converted into a rigid, linear double helix, which driven the gold nanoparticles tag far away from the electrode. Thus a significant increase in impedance occurred. The biosensor showed a wide dynamic detection range from 1.0×10−17 to 1.0×10−11 M, and a LOD of 1.7×10−18 M. In addition, it exhibited good selectivity, stability, and regeneration ability.Thioglycolic acid and its salts may be used in: Hair products: general use, max concentration allowed 8% (pH 7 to 9.5) professional use, max concentration allowed 11% (pH 7 to 9.5) Depilatories, max concentration allowed 5% (pH 7 to 12.7) Hair rinse-off products, max concentration allowed 2% (pH up to 9.5) Thus, the use of thioglycolic acid and thioglycolates in hair products is in accordance with the new European cosmetics legislation, but the application of these products to eyelashes has been prohibited since 11 July 2013.In order to ensure the legal compliance of these products, the applicant submitted a dossier for the safety assessment of thioglycolic acid and thioglycolates in cosmetic products used on eyelashes. It has been reported that eyelash-waving products based on thioglycolic acid derivatives are applied by professionals and during application a direct contact to the skin or eyes is avoided with the help of a sticking eyelash roll. Original studies on chemical characterisation, physico-chemical properties and toxicological endpoints of thioglycolic acid and its salts were not included in the submitted dossier. The submitted literature, as well as additional literature searched by the SCCS were used for the safety evaluation of thioglycolic acid and its salts in this Opinion. According to information submitted by the industry (ICADA 2012) the stability of thioglycolic acid in a gel preparation, containing circa 8.8% (range 8.7% to 8.9%) thioglycolic acid, over seven months at alternating temperatures (20°C / 40°C) in different bottles was evaluated.In the polyolefin bottle, the content of the active ingredient declined to 82.8% of the initial value. In the glass bottle the thioglycolic acid was able to resist the thermal stress (the final measured content was 97.8% of the t0-value). When the original product was stored at room temperature over one year, the content of the active ingredient declined to 94.9% of the initial value. Thus, this marketed product appeared to be stable with respect to thioglycolic acid content when stored in a glass bottle.Thioglycolic acid and its ammonium and sodium salts are toxic by oral administration. When expressed as thioglycolate anion, whatever the salt is, the LD50’s of the salts were in the range of the thioglycolic acid LD50 in rats.In an acute oral toxicity study performed according to the OECD guideline # 401, 5 groups of 5 Sprague-Dawley rats per sex were dosed with 0, 40, 64, 80 and 200 mg/kg bw thioglycolic acid (purity 99%). Animals were observed for 14 days following the exposure for mortality and clinical signs. Mortality occurred at dose levels equal to and exceeding 64 mg/kg bw. Behavioural abnormalities (piloerection, lethargy, ptosis, prostration) were observed in all treated rats. The LD50 of thioglycolic acid was 73 mg/kg bw.The acute oral toxicity of ammonium and sodium thioglycolates was tested in male and female rats according to the Acute Toxic Class Method (OECD guideline # 423). The LD50 of the 71% aqueous solution of ammonium salt was between 50 and 200 mg/kg bw (or between 35 and 142 mg/kg bw when expressed as active ingredient) in rats. Sodium thioglycolate was tested pure (>98%) or as a 46% aqueous solution in Wistar rats, the LD50’s were between 50 and 200 or 200 and 500 mg/kg bw (Sanders, 2000), respectively.Another study performed with ammonium thioglycolate according to the OECD guideline #401 lead to an acute LD50 between 25 and 200 mg a.i./kg bw in Wistar rats.Thioglycolic acid was applied as a single occlusive patch test on the abdominal skin of rabbits. Skin reactions were observed and recorded at various time intervals up to 7 hours or until a chemical burn was observed. At the end of the exposure period, the skin area was washed with soap and water. Thioglycolic acid application resulted in necrosis within 5 minutes. This was accompanied by hyperemia and edema.Patch tests with thioglycolic acid (apparently not neutralized) at concentrations (up to 11%) described as typical of hair waving solutions were carried out with duration from 1 hour through 96 hours on the unabraded skin of 294 and the abraded skin of 63 volunteers. In the study, the data from which were not presented fully in this paper, thioglycolic acid was found to cause irritation to the skin at 2.8% or higher, being most irritating to abraded skin.Tests using 4.6% aqueous thioglycolic acid caused irritation to the skin of volunteers after 4-6 hours.Thioglycolic Acid and it salts and esters modify hair fibers to facilitate changes to the structure of the fibers, such as with permanent waves or with hair straightening. They are also used to chemically break down hair fibers so that unwanted hair can be removed by simply wiping it from the skin.Based on Fenton reaction without adding nanomaterials, a simple colorimetric sensor for detecting thioglycolic acid (Thioglycolic acid (Tiyoglikolik Asit)) was developed. By reducing Fe³⁺ ions to Fe²⁺ ions, Thioglycolic acid (Tiyoglikolik Asit) efficiently stimulates Fenton reaction through accelerating Fe³⁺/Fe²⁺ redox cycle. Owing to this, the accelerated decomposition of H2O2 generates more [rad]OH radicals, which cause a significant blue change in the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). Compared with Fe³⁺/H2O2/TMB system, this sensor can be operated over a wider pH range from 4.0 to 8.0. The calibration curve of Thioglycolic acid (Tiyoglikolik Asit) is achieved in the concentration range of 0.046–7.37 μg mL⁻¹ under optimized conditions, and the detection limit of Thioglycolic acid (Tiyoglikolik Asit) is 0.036 μg mL⁻¹ (S/N = 3). This sensor has been successfully applied to the detection of Thioglycolic acid (Tiyoglikolik Asit) in cold wave lotion with recovery rates between 99.1 and 101.6%, which has broad application prospects in cosmetic analysis and environmental monitoring.
TR
Thioglycolic acid (Tiyoglikolik Asit) IUPAC Ad 2-sülfanasetik asit
Thioglycolic acid (Tiyoglikolik Asit) InChI InChI = 1S / C2H4O2S / c3-2 (4) 1-5 / h5H, 1H2, (H, 3,4)
Thioglycolic acid (Tiyoglikolik Asit) InChI Anahtar CWERGRDVMFNCDR-UHFFFAOYSA-N
Thioglycolic acid (Tiyoglikolik Asit) Kanonik GÜLÜMSEME C (C (= O) O) S
Thioglycolic acid (Tiyoglikolik Asit) Moleküler Formül C2H4O2S
Thioglycolic acid (Tiyoglikolik Asit) CAS 68-11-1
Thioglycolic acid (Tiyoglikolik Asit) Kullanmdan Kaldrlan CAS 57755-20-1, 7283-42-3
Thioglycolic acid (Tiyoglikolik Asit) Avrupa Topluluu (EC) Numaras 200-677-4
Thioglycolic acid (Tiyoglikolik Asit) ICSC Numaras 0915
Thioglycolic acid (Tiyoglikolik Asit) NSC Numaras 1894
Thioglycolic acid (Tiyoglikolik Asit) RTECS Numaras AI5950000
Thioglycolic acid (Tiyoglikolik Asit) BM Numaras 1940
Thioglycolic acid (Tiyoglikolik Asit) UNII 7857H94KHM
Thioglycolic acid (Tiyoglikolik Asit) DSSTox Madde Kimlii DTXSID8026141
Thioglycolic acid (Tiyoglikolik Asit) Fiziksel Tanm Sv
Thioglycolic acid (Tiyoglikolik Asit) Renk / Form Renksiz sv
Thioglycolic acid (Tiyoglikolik Asit) Koku Güçlü, ho olmayan koku
Thioglycolic acid (Tiyoglikolik Asit) Kaynama Noktas 20 mm Hg’de 248 ° F
Thioglycolic acid (Tiyoglikolik Asit) Erime Noktas 2.3 ° F
Thioglycolic acid (Tiyoglikolik Asit) Parlama Noktas 235 ° F
Thioglycolic acid (Tiyoglikolik Asit) 64 ° F’de 100 mg / mL’den büyük veya buna eit çözünürlük
Thioglycolic acid (Tiyoglikolik Asit) 68 ° F’de younluk 1.3253
Thioglycolic acid (Tiyoglikolik Asit) Buhar Younluu 3.18 (Hava = 1)
Thioglycolic acid (Tiyoglikolik Asit) Buhar Basnc 64 ° F’de 10 mm Hg
Thioglycolic acid (Tiyoglikolik Asit) LogP 0,09 (LogP)
Thioglycolic acid (Tiyoglikolik Asit) Kararllk / Raf Ömrü Önerilen saklama koullarnda kararldr.
Thioglycolic acid (Tiyoglikolik Asit) Kendiliinden Tutuma Scakl 350 ° C
Thioglycolic acid (Tiyoglikolik Asit) Ayrma Ayrmak için stldnda / sülfür oksit / zehirli dumanlar çkarr.
Thioglycolic acid (Tiyoglikolik Asit) 20 ° C’de viskozite 6,55 mPa.s (= cP)
Thioglycolic acid (Tiyoglikolik Asit) Andrclk Andrc
Thioglycolic acid (Tiyoglikolik Asit) Yanma Iss 1450 kJ / mol
Thioglycolic acid (Tiyoglikolik Asit) Buharlama Iss 627,2 J / g
Thioglycolic acid (Tiyoglikolik Asit) Krlma ndeksi Krlma ndeksi: 20 ° C / D’de 1.5080
Thioglycolic acid (Tiyoglikolik Asit) Ayrlma Sabitleri pKa = 3.55
Thioglycolic acid (Tiyoglikolik Asit) Moleküler Arlk 92.12 g / mol
Thioglycolic acid (Tiyoglikolik Asit) XLogP3 0.1
Thioglycolic acid (Tiyoglikolik Asit) Hidrojen Ba Donör Says 2
Thioglycolic acid (Tiyoglikolik Asit) Hidrojen Ba Alcs Says 3
Thioglycolic acid (Tiyoglikolik Asit) Dönebilen Tahvil Says 1
Thioglycolic acid (Tiyoglikolik Asit) Tam Kütle 91.993201 g / mol
Thioglycolic acid (Tiyoglikolik Asit) Monoizotopik Kütle 91.993201 g / mol
Thioglycolic acid (Tiyoglikolik Asit) Topolojik Polar Yüzey Alan 38,3 Ų
Thioglycolic acid (Tiyoglikolik Asit) Ar Atom Says 5
Thioglycolic acid (Tiyoglikolik Asit) Resmi Ücret 0
Thioglycolic acid (Tiyoglikolik Asit) Karmaklk 42.9
Thioglycolic acid (Tiyoglikolik Asit) zotop Atom Says 0
Thioglycolic acid (Tiyoglikolik Asit) Tanml Atom Stereo Merkez Says 0
Thioglycolic acid (Tiyoglikolik Asit) Tanmsz Atom Stereo Merkez Says 0
Thioglycolic acid (Tiyoglikolik Asit) Tanml Bond Stereocenter Says 0
Thioglycolic acid (Tiyoglikolik Asit) Tanmsz Ba Stereocenter Says 0
Thioglycolic acid (Tiyoglikolik Asit) Kovalent Bal Birim Says 1
Thioglycolic acid (Tiyoglikolik Asit) Bileik Kanonikletirilmitir Evet
Thioglycolic acid (Tiyoglikolik Asit), organik bileik HSCH2CO2H’dir. Thioglycolic acid (Tiyoglikolik Asit) genellikle merkaptoasetik asit (MAA) olarak adlandrlr. Hem bir tiyol (merkaptan) hem de karboksilik asit fonksiyonel gruplar içerir. Çok ho olmayan bir kokusu olan renksiz bir svdr. Thioglycolic acid (Tiyoglikolik Asit), polar organik çözücülerle karabilir. Thioglycolic acid (Tiyoglikolik Asit), kimyasal bir tüy dökücü olarak kullanlr ve halen, özellikle kalsiyum tiyoglikolat ve sodyum tiyoglikolat dahil olmak üzere tuz formlarnda kullanlmaktadr. Thioglycolic acid (Tiyoglikolik Asit), kalclar için kullanlan amonyum tiyoglikolatn öncüsüdür. Thioglycolic acid (Tiyoglikolik Asit) ve türevleri saçn korteksindeki disülfür balarn krar. Biri, saça “perma” vererek bu kopuk balar düzeltir. Alternatif olarak ve daha yaygn olarak, ilem deri ilemede yaygn olarak yapld gibi epilasyona yol açar. Ayn zamanda bir asitlik göstergesi olarak, tiyoglikolatlarn üretiminde ve bakteriyolojide tiyoglikolat ortamnn hazrlanmasnda kullanlr. [5] Aslnda, yaplarn incelemek için younlatrlm tanenler üzerinde kullanlan tiyoglikoliz reaksiyonlar. Tiyoglikolik asit izooktil esterlerinin organotin türevleri, PVC için stabilizatör olarak yaygn olarak kullanlmaktadr. Bu türler R2Sn (SCH2CO2C8H17) formülüne sahiptir 2. Thioglycolic acid (Tiyoglikolik Asit) uygulamak trnaklar yumuatabilir ve ardndan kskaç trnaklarn doru konumda sabitleyebilir. Sodyum tiyoglikolat, özel bir bakteri üreme ortamnn bir bileenidir: tioglikolat çorbas. Ayrca jantlardan demir oksit kalntsn temizlemek için “serpinti sökücü” [6] veya “tekerlek temizleyici” olarak da kullanlr. [7] Demirli demir, tiyoglikolat ile birleerek krmz-mor [8] ferrik tiyoglikolat oluturur. Tiyoglikolik asit, sulu ortamda sodyum veya potasyum klorasetatn alkali metal hidrosülfür ile reaksiyona sokulmasyla hazrlanr. [11] Sodyum tiyosülfatn kloroasetik asit ile reaksiyonu ile elde edilen Bunte tuzu yoluyla da hazrlanabilir: [5] [12] Tiyoglikolik asit, genellikle dianyonu olarak, metal iyonlar ile kompleksler oluturur. Bu tür kompleksler demir, molibden, gümü ve kalayn tespiti için kullanlmtr. Tiyoglikolik asit dietil asetilmalonat ile reaksiyona girerek asetilmerkaptoasetik asit ve Fe (III) ‘ün Fe (II)’ ye dönütürülmesinde indirgeyici ajan olan dietil malonat oluturur. Tiyoglikolik asit: Özel Kimyasallar Riskinin Anlalmas Tiyoglikolik asit ciddi yanklara ve kimyasal yaralanmalara neden olabilir cilt, göz, sindirim veya solunum yollar ile temas ettiinde. Andrcdr ve hatta sistemik bir toksisiteye neden olabilir. Ancak tiyoglikolik asit, tüy dökücü kremler gibi ev ürünlerinde ve “permalar” için kuaförler tarafndan hala yaygn olarak kullanlmaktadr. Gösterdii riski anlayalm. Tiyoglikolik asit, kalc dalga solüsyonlar ve tüy dökücüler dahil kozmetik formülasyonlarda, farmasötik imalatta ve stabilizatör olarak kullanlan, güçlü, tipik merkaptan holanmayan bir kokuya sahip (koku alma yorgunluu meydana gelse de) renksiz bir svdr. vinil plastikler. Yeni bir kullanm, Cd / Te kuantum mikrodotlar (QD’ler) için bir kapaklama veya stabilize edici ajan olarak kullanlmaktadr. Tiyoglikolat kimyasal snfnn bir üyesidir. Tiyoglikolik asit, reaktif bir indirgeme ajandr: havaya maruz kaldnda kolayca oksitlenir. Tiyoglikolik asit, molekülde bir karboksilik asit fonksiyonunun varlndan dolay da zayf bir asittir.Yüksek reaktivitesi nedeniyle hava, güçlü oksitleyiciler, bazlar, sodyum, potasyum, magnezyum ve kalsiyum gibi aktif metallerle uyumsuzdur ( Tiyoglikolik asit, Snf IIIB Yanc Sv olarak kabul edilir, bu nedenle yanc olarak kabul edilmez. tiyoglikolik asit, gözleri, deriyi ve mukoza zarlarn temasnda tahri edici veya andrc bir maddedir. ciddi cilt yanklar ve göz hasarlar. Avrupa Kimyasal Ajans (ECHA), H314 risk ibaresi ile etiketlenmesini önermektedir. (tam snflandrma) Kutanöz veya oküler tiyoglikolik aside maruz kalma durumunda, kornea hasar ve kabarck oluumuyla birlikte kimyasal cilt hasar meydana gelmitir.Tiyoglikolik asit svsnn iki tarafl olarak gözlere ve ayrca yüz derisine sçrad bildirilen bir vakada, Bacak ve kollarda cilt bölgelerinde ikinci derece (su toplamas) yaralanma meydana geldi. ki saat sonra, kornealar bulanklat (biri dierinden daha kötü) ve konjonktiva ödemliydi. Kornealarn ve konjonktivann iyilemesi birkaç ay sürdü ve hafif görme bozukluuna neden olan bir miktar vaskülarizasyon meydana geldi. Deneysel hayvan çalmalar, dorudan temastan önemli göz ve cilt lezyonlar gösterdi. Ek olarak, tiyoglikolatlar snfnn deney hayvanlarnda deriden hzla emildii ve sistemik toksisiteye yol açt gösterilmitir. 79 yandaki bir kadnn toksik pulmoner ödem dahil olmak üzere önemli sistemik toksisite gelitirdii tek bir vaka raporu bu bir ekilde desteklenmektedir. ve hemorajik fibrinöz trakeobronit sekelleri, akut solunum sknts sendromu (ARDS), laktik asidoz, böbrek ve karacier yetmezlii, rabdomiyoliz ve tiyoglikolik asit içeren evde kalc bir sallama solüsyonuna maruz kalmann ardndan mukoza zarndan kanama. Bununla birlikte, bu maruz kalma, birincil olarak inhalasyon oranyla olmu olabilir.Tiyoglikolik asit, yutulduunda karacier ve sindirim sistemi toksisitesi de gösterir.Kozmetik formülasyonlarn bir parças olarak tiyoglikolik asit, özellikle kronik olarak maruz kalan kuaförlerde tahri edici veya alerjik kontakt dermatit geliimi ile ilikilendirilmitir.Tiyoglikolik asit mutajenik deildir. Metabolik aktivasyon içeren veya içermeyen çeitli Salmonella tyhrimurium sularnda tiyoglikolik asidin bir kanserojen olduuna dair bir kant yoktur. Kükürtlenmi mineral piriti bir aglomerasyon basklayc varlnda aglomere etme giriiminde bulunulan bir dizi ön test, aadakileri göstermitir: malzemeler etkili basklayclard: Thioglycolic acid (Tiyoglikolik Asit), tiolaktik asit (TLA), merkaptosüksinik asit (MSA), 3-merkaptopropionik asit (MPA) ve 2-merkapto-etan-sülfonik asit (MES). PH 4,5’te farkl Thioglycolic acid (Tiyoglikolik Asit) konsantrasyonlarnn varlnda kükürtlenmi mineral pirit için tipik sonuçlar ekil 1’de gösterilmektedir. Thioglycolic acid (Tiyoglikolik Asit) olmadan yürütülen bir balangç deneyi, piritin heptan ile kolayca toplandn gösterdi çünkü heptan dozaj arttkça partikül süspansiyonunun bulankl giderek azald. 0.0002 M Thioglycolic acid (Tiyoglikolik Asit) varlnda, bulanklk Thioglycolic acid (Tiyoglikolik Asit)’sz olandan daha büyüktü, bu da parçacklarn daha tam olarak daldn gösteriyor. Bununla birlikte, artan miktarlarda heptan eklendikçe bulanklk yine de azald, bu da aglomerasyonun meydana geldiini gösterdi. Ancak 0,001 M ve daha yüksek Thioglycolic acid (Tiyoglikolik Asit) konsantrasyonlarnn varlnda, bulanklk yalnzca daha fazla heptan eklendikçe artt. Bu eilim, görünüe göre, heptan damlacklarnn sulu süspansiyon içinde dalmasndan kaynaklanyordu; bu, heptann pirite yapmad anlamna geliyordu. Topaklamay önlemek için sadece 0.0002 M’lik bir Thioglycolic acid (Tiyoglikolik Asit) konsantrasyonunun yeterli olmas dnda pH 7.5 ve pH 10.4’te benzer sonuçlar elde edildi. Kükürtlü kömür türevi pirit ile de benzer sonuçlar elde edilmitir. Temel bir deney, bu materyalin bir basklayc olmadan kolayca toplandn, buna karn aglomerasyonun Thioglycolic acid (Tiyoglikolik Asit) tarafndan bastrldn gösterdi.Linyinin moleküler arlk, younluk, ekil, kristallik vb. Gibi makromoleküler özelliklerini incelemek için detayl bir yapsal analiz gereklidir. Bu genellikle, lignin polimerine fonksiyonel gruplar ekleyen, özelliklerini deitiren ve böylece polimerin doal yapsn bozmadan içeriin / bileimin nicelletirilmesine izin veren Thioglycolic acid (Tiyoglikolik Asit) ve ACBR gibi çeitli kimyasallardan yararlanan çeitli bozunmayan teknikler kullanlarak yaplr [ 42,43]. Bu tekniklerde, ligninin türetilmesi ilk olarak, çözünürlüünde bir deiiklikle sonuçlanan P-Oβ-4 birimlerine ilevsel gruplar eklenerek yaplr. Daha fazla miktar tayini için, lignin uygun çözücüler içinde çözündürülür ve içerik, UV emilimi kullanlarak belirlenir. Türetme ve çözündürme prosedürlerini gerçekletirirken polimerin doal yapsn korumak için özen gösterilmelidir. Daha sonra, çözündürülmü lignin, boyut dlama kromatografisiyle polimerin boyutunu ve konformasyonunu incelemek için analiz edilir. Uzun elüsyon süresi gibi boyut dlama kromatografisi kullanmann baz snrlamalar vardr ve molar kütle tayini UV emilimine dayand için çok doru deildir. Dahas, polimerin ayrntl yaps / konformasyonu tek bana UV absorpsiyon yöntemi kullanlarak doru bir ekilde çallamaz [44]. Bu nedenle dinamik k saçma yönteminin kullanm ortaya çkmtr. Bu yöntem, numuneyi bir lazer demeti ile aydnlatmak prensibine dayanmaktadr ve dank n dalgalanmalar, polimerin molar kütlesini ve ekil dalmn belirleyebilen hzl bir foton detektörü tarafndan bilinen bir saçlma açsnda alglanr ve analiz edilir. doru [44]. Bu nedenle, boyut dlama kromatografisi ile birlikte degradatif olmayan uygun bir ekstraksiyon yönteminin kullanm, lignin yapsn belirlemek için kullanlr.Proteinler, protein reaktif ksmlar (karboksil ve amino gruplar gibi) arasnda kovalent ba yoluyla baaryla nanopartiküllerin yüzeyine konjuge edilir. ) ve nanopartiküllerin kapama ajan tarafndan salanan fonksiyonel gruplar. Karbodiimid balanmas, amid veya ester ba oluumu yoluyla protein-nanopartikül konjugasyonu için en yaygn kullanlan reaksiyondur. Arginin, sr serum albümininin (BSA) karboksilik gruplar ile amid ba oluumu için bir frsat veren serbest amin gruplar salamak için demir oksit nanopartiküllerinin (IONP’ler) yüzeyini süslemek için kullanlr. Benzer ekilde, gadolinyum dietilen triamin pentaasetik asit (Gd-DTPA) komplekslerinin ve tiyoglikolik asit ile ilevselletirilmi CdTe QD’lerin (Thioglycolic acid (Tiyoglikolik Asit)-QD’ler) karboksilik gruplar, srasyla HSA ve BSA’nn amino gruplarna karbodiimid balanmas yoluyla konjuge edilir. Thioglycolic acid (Tiyoglikolik Asit)-QD’leri BSA’ya konjuge etmek için bir balayc olarak etil-3- (3-dimetilaminopropil) karbodiimid hidroklorür (EDC) kullanmnn, toksisitelerinden kaçnrken glutaraldehit gibi çift ilevli çapraz balayclarla karlatrlabilir olduu bulunmutur. BirlemeVerimlilik, yan zincirli karboksilik gruplarn etilendiamin ile deitirilmesiyle albüminin katyonizasyonu ve ardndan sitrat balkl manyetik nanopartiküllerin (MNP’ler) yüzey karboksilik gruplarna balanmas ve böylece albümin-manyetik nanohibritlerin detaylandrlmasyla artrlabilir. Süksinik anhidrit gibi yaygn balayclar, mezogözenekli silika nanopartikülleri (MSN’ler) proteinlere konjuge etmek için kullanlr; jelatin, BSA ve lizozim, MSN – protein nanohibritlerin imalatna yol açar. Amino-ilevselletirilmi MSN’ler, karboksilatl MSN’ler üreten süksinik anhidrit molekülleri ile kovalent olarak dekore edilir, ardndan amino gruplar yoluyla karbodiimid balanmas ile karboksilatl MSN’lerin yüzeyi üzerinde protein hareketsizletirilir. Albümin ve jelatin, muhtemelen daha yüksek moleküler arlklarndan dolay MSN’lere lizozime kyasla daha yüksek miktarlarda balanr. Bir baka tiol-maleimid balama teknii de tiollenmi proteinleri maleimidden türetilmi inorganik nanopartiküllerin yüzeyine balamak için kullanlmtr. Tiyollü transferrin (Tf),% 84 Tf balanma etkinliiyle PEG-maleimid ile aktive edilmi HSA-Gd-DTPA nanopartiküllerine baaryla eklendi. Dier bir konjugasyon yöntemi, inorganik nanopartiküllerin yüzeyindeki rezidüel aldehit gruplar ile proteinlerin amin gruplar arasnda Schiff baz balarnn oluumunu içerir. Amin ile modifiye edilmi MSN’lerin glutaraldehit ile ilenmesi ve elde edilen aldehit ile ilevselletirilmi MSN’lerin jelatin ile daha fazla reaksiyona girmesi, MSN’lerin yüzeyinde jelatin korona üretimine yol açar [45]. Tioglikolik asit ve glikolik asit eterleri ek faydalara sahip olabilir. daha yüksek bir kaynama noktas ve muhtemelen artan suda çözünürlük [11]. Daha yüksek bir kaynama noktas, katk maddesinin ham ünitede damtma ürünü fraksiyonlarna damtlmayaca ve korozyona veya ürün kalitesi sorunlarna neden olmayaca anlamna gelir. Suda daha yüksek çözünürlük ayrca katk maddesinin tuz gidericideki ham petrolden çkarlmasna yardmc olur ve sonraki ilem birimlerine ulaabilecek miktar azaltr. Ham bir yaa glikolik asit (yani, hidroksiasetik asit) ve dier suda çözünür hidroksiasitlerin eklenmesi, bir tuz gidericiden geçirildiinde hidrokarbondaki kalsiyum ve dier metallerin ve aminlerin yan sra reaktif fosfor türlerinin miktarn önemli ölçüde azaltabilir. Bir rafineri [7]. Bu yöne doru, Zhi, Bando ve Golberg, H2O2’deki BNNT’lerin ilemden geçirilmesinin, hidroksil gruplarn (tek ba OH) bor sahalarna getirirken, NH’yi nitrojen bölgelerine tek baladn kefettiler [55]. Bu tekli bondOH gruplar, perflorobütirik asit (CF3CF2CF2COOH) ve tiyoglikolik asit (HSCH2COOH) ile esterletirildi ve daha fazla kimyasal ilevselletirme için kullanld.Elektrokimyasal DNA biyosensörlerinin yapm için altn nanopartikül kullanmann bir baka benzersiz avantaj, DNA alglama için amplifikasyon yollarnn gelitirilmesidir. Etkinlikler. Kefedilen daha önceki alternatiflerden biri, birincil prob DNA tanma olayn bir koloidal altn etiket kullanmyla birletirmeyi ve ardndan etiketsiz saptamay (yani empedimetri kullanarak) oluuyordu. Açklayc bir örnek, saç tokas yapl DNA problarnn serbest terminali üzerinde oldukça iletken altn nanopartiküllerin montajna dayanan bir elektrokimyasal DNA biyosensörünün yapmdr. Srasyla 3′ ve 5′ uçlarnda amino ve tiyol gruplarna sahip iki ilevli firkete yapl DNA probu, tiol grubu araclyla bir altn elektrot üzerinde hareketsizletirildi (ekil 11.15). Daha sonra, tiyoglikolik asit (Thioglycolic acid (Tiyoglikolik Asit)), karboksilik-amino younlama reaksiyonu yoluyla firkete DNA problarnn 3′-uçlarna alanmtr ve altn nanopartikül etiketleri, SH ile kendi kendine birletirme yoluyla prob DNA’snn serbest terminaline eklenmitir. deitirilmi Thioglycolic acid (Tiyoglikolik Asit). Böylece, önemli ölçüde düük bir elektrokimyasal empedans arka plan tepkisine sahip oldukça iletken bir biyo-arayüz oluturulmutur. Tamamlayc DNA ile hibridizasyon üzerine, saç tokas DNA probunun gövde-halka ksm, altn nanopartikül etiketini elektrottan uzaa iten sert, dorusal bir çift sarmala dönütürüldü. Böylece empedansta önemli bir art meydana geldi. Biyosensör, 1.0 × 10−17 ile 1.0 × 10−11 M arasnda geni bir dinamik alglama aral ve 1.7 × 10−18 M bir LOD gösterdi.Ayrca, iyi seçicilik, stabilite ve rejenerasyon yetenei sergilemitir. Tiyoglikolik asit ve tuzlar unlarda kullanlabilir: Saç ürünleri: genel kullanm, izin verilen maksimum konsantrasyon% 8 (pH 7 ila 9,5) profesyonel kullanm, izin verilen maksimum konsantrasyon% 11 (pH 7 ila 9,5) Tüy dökücüler, izin verilen maksimum konsantrasyon% 5 (pH 7 ila 12,7 ) Saç durulama ürünleri, maksimum konsantrasyona izin verilen% 2 (pH 9,5’e kadar) Dolaysyla saç ürünlerinde tiyoglikolik asit ve tiyoglikolatlarn kullanm yeni Avrupa kozmetik mevzuatna uygun olmakla birlikte, bu ürünlerin kirpiklere uygulanmas Bavuru sahibi, bu ürünlerin yasal uyumluluunu salamak için kirpiklerde kullanlan kozmetik ürünlerdeki tiyoglikolik asit ve tiyoglikolatlarn güvenlik deerlendirmesi için bir dosya sunmutur. Olmutur tiyoglikolik asit türevi bazl kirpik sallayan ürünlerin profesyoneller tarafndan uygulandn ve uygulama srasnda yapkan bir kirpik rulosu yardmyla cilde veya göze dorudan temastan kaçnldn bildirdi. Tiyoglikolik asit ve tuzlarnn kimyasal karakterizasyonu, fiziko-kimyasal özellikleri ve toksikolojik sonlanm noktalar ile ilgili orijinal çalmalar sunulan dosyaya dahil edilmemitir. Sunulan literatür ve SCCS tarafndan aratrlan ek literatür, bu Görüte tiyoglikolik asit ve tuzlarnn güvenlik deerlendirmesi için kullanlmtr. Endüstrinin sunduu bilgilere göre (ICADA 2012), tiyoglikolik asidin, yaklak% 8,8 (% 8,7 ila% 8,9) tiyoglikolik asit içeren bir jel preparatndaki stabilitesi, yedi ay boyunca deien scaklklarda (20 ° C / 40 ° C) ) farkl ielerde deerlendirildi.Poliolefin iede, aktif bileen içerii balangç deerinin% 82,8’ine dütü. Cam iede tiyoglikolik asit termal strese direnebildi (ölçülen nihai içerik t0 deerinin% 97.8’iydi). Orijinal ürün oda scaklnda bir yldan fazla saklandnda, aktif bileen içerii balangç deerinin% 94.9’una dütü. Bu nedenle, bu pazarlanan ürünün, bir cam iede saklandnda tiyoglikolik asit içerii açsndan stabil olduu görülmütür. Tiyoglikolik asit ve bunun amonyum ve sodyum tuzlar, oral uygulama ile toksiktir. Tiyoglikolat anyon olarak ifade edildiinde, tuz ne olursa olsun, tuzlarn LD50’leri sçanlarda tiyoglikolik asit LD50 aralndayd. OECD yönergesi # 401’e göre yaplan bir akut oral toksisite çalmasnda, 5 Sprague-Dawley 5 grup cinsiyet bana sçanlara 0, 40, 64, 80 ve 200 mg / kg canl arlk tiyoglikolik asit (saflk% 99) verildi. Ölüm ve klinik iaretlere maruz kaldktan sonra 14 gün boyunca hayvanlar gözlendi. Ölüm, 64 mg / kg vücut arl’na eit ve bunu aan doz seviyelerinde meydana geldi. Tedavi edilen tüm sçanlarda davran anormallikleri (piloereksiyon, letarji, pitozis, secde) gözlendi. Tiyoglikolik asidin LD50’si 73 mg / kg bw idi. Amonyum ve sodyum tiyoglikolatlarn akut oral toksisitesi, Akut Toksik Snf Metoduna (OECD klavuz no 423) göre erkek ve dii sçanlarda test edildi. % 71 sulu amonyum tuzu çözeltisinin LD50’si, sçanlarda 50 ila 200 mg / kg canl arlk (veya aktif bileen olarak ifade edildiinde 35 ila 142 mg / kg canl arlk) arasndayd. Sodyum tiyoglikolat saf (>% 98) veya Wistar sçanlarnda% 46 sulu çözelti olarak test edildi, LD50’ler srasyla 50 ila 200 veya 200 ve 500 mg / kg canl arlk (Sanders, 2000) arasndayd. OECD klavuzuna göre # 401, Wistar sçanlarnda 25 ila 200 mg ai / kg vücut arl arasnda akut LD50’ye yol açmtr. tiyoglikolik asit, tavanlarn abdominal derisine tek tkayc yama testi olarak uygulanmtr. Deri reaksiyonlar 7 saate kadar çeitli zaman aralklarnda veya bir kimyasal yank gözlenene kadar gözlemlendi ve kaydedildi. Maruz kalma süresinin sonunda cilt bölgesi sabun ve su ile ykand. Tiyoglikolik asit uygulamas 5 dakika içinde nekroza neden oldu. Buna hiperemi ve ödem elik ediyordu. Tipik saç sallama solüsyonlar olarak tanmlanan konsantrasyonlarda (% 11’e kadar) tiyoglikolik asit (görünüte nötralize edilmemi) ile yama testleri, 294’ün andrlmam derisinde 1 saat ila 96 saat arasnda bir sürede gerçekletirildi. ve 63 gönüllünün syrlm cildi. Verilerin bu yazda tam olarak sunulmad çalmada, tiyoglikolik asidin% 2,8 veya daha yüksek oranda ciltte tahrie neden olduu ve anm cildi en çok tahri ettii bulundu.% 4,6 sulu tiyoglikolik asit kullanan testler, ciltte tahrie neden oldu. 4-6 saat sonra gönüllülerin derisi. Tiyoglikolik Asit ve tuzlar ve esterleri, kalc dalgalar veya saç düzletirme gibi liflerin yapsndaki deiiklikleri kolaylatrmak için saç liflerini deitirir. Ayrca saç liflerini kimyasal olarak parçalamak için de kullanlrlar, böylece istenmeyen tüyler basitçe ciltten silinerek giderilebilir. Fenton reaksiyonuna dayal olarak nanomateryaller eklemeden, tiyoglikolik asidi (Thioglycolic acid (Tiyoglikolik Asit)) tespit etmek için basit bir kolorimetrik sensör gelitirildi. FeGA iyonlarn Fe²⁺ iyonlarna indirgeyerek, Thioglycolic acid (Tiyoglikolik Asit) Fe³⁺ / Fe²⁺ redoks döngüsünü hzlandrarak Fenton reaksiyonunu verimli bir ekilde uyarr. Bundan dolay, H2O2’nin hzlandrlm ayrmas 3,3 ′, 5,5′-tetrametilbenzidinin (TMB) oksidasyonunda önemli bir mavi deiiklie neden olan daha fazla [rad] OH radikali üretir. Fe³⁺ / H2O2 / TMB sistemi ile karlatrldnda, bu sensör 4.0 ila 8.0 arasnda daha geni bir pH aralnda çaltrlabilir. Thioglycolic acid (Tiyoglikolik Asit)’nn kalibrasyon erisi, optimize edilmi koullar altnda 0,046–7,37 μg mL⁻¹ konsantrasyon aralnda elde edilir ve Thioglycolic acid (Tiyoglikolik Asit)’nn saptama snr 0,036 μg mL⁻¹ (S / N = 3) eklindedir. Bu sensör, kozmetik analiz ve çevresel izlemede geni uygulama olanaklarna sahip,% 99.1 ile% 101.6 arasnda geri kazanm oranlar ile souk dalga losyonunda Thioglycolic acid (Tiyoglikolik Asit)’nn tespitine baaryla uygulanmtr.