ITACONIC ACID (TAKONK AST)

Table of Contents

ITACONIC ACID (TAKONK AST)

taconic acid

CAS NO:97-65-4

 

synonyms:

Itaconic acid; itakonik asit; takonik asit; ITAKONIK AT; TAKONK AST; TAKONK ASD; TAKONK; TACONIC ACID; TAKONK AST; TAKONK; TAKONAT; itakonik asit; ITACONIC ACIDE; TAKONK ASDE; TAKONK AST; itakonik asit; itaconic aid; taconc acd; itaconic acid; iitaconate; itaconic acid; taconc; itaconic; 2-Methylenesuccinic acid; itaconate; Itaconic acid polymers; TAKONK AST; Propylenedicarboxylate; methylene-butanedioicaci; ACMC-1CFCS; Itaconic acid, >=99%;itakonik asit;MolPort-001-779-972;Itaconic acid, analytical standard;ZINC895261;KS-00000W8Q;NSC-3357;Tox21_201299;Tox21_303071;ANW-40876;BBL011584;BDBM50036216;LMFA01170063;MFCD00004260;STL163322;50976-31-3 (hydrochloride salt);AKOS000118895;5363-69-9 (di-hydrochloride salt);MCULE-5221256796;NE10303;TAKONK AST; RP19897; TAKONK AST; RP19898; TAKONK AST; RTX-012445; TAKONK AST; TRA0065458; TAKONK AST; Butanedioic acid,ethylidene-,(E)-(9ci);TAKONK AST; TAKONK AST; NCGC00249019-01; TAKONK AST; NCGC00257141-01; TAKONK AST; NCGC00258851-01; TAKONK AST; AJ-24165;TAKONK AST; AN-24459;AS-11816;KB-53018;LS-45750;AB1003031;LS-180669;Succinic acid, methylene-, polymers (8CI);FT-0627543;M0223;ST24040898;C00490;74477-EP2269983A1; itakonik asit; 74477-EP2269984A1; itakonik asit; 74477-EP2308857A1;S04-0117;I14-42909;Z57127539;F2191-0234;2-METHYLENE,1,4-BUTANEDIOIC ACID (ITACONIC ACID)1; 53EEC7A3-4846-4588-BBC9-CB8846377B96; InChI=1/C5H6O4/c1-3(5(8)9)2-4(6)7/h1-2H2,(H,6,7)(H,8,9; ITN; itakonik asit; Itakonik asit; Itaconic acid; 97-65-4; Itaconic acid; itakonik asit; ITAKONIK AT; TAKONK AST; TAKONK ASD; TAKONK; TACONIC ACID; TAKONK AST; TAKONK; TAKONAT; ITACONIC ACIDE; TAKONK ASDE; TAKONK AST; itakonik asit; itaconic aid; taconc acd; itaconic acid; iitaconate; itaconic acid; taconc; itaconic; 2-Methylenesuccinic acid; itaconate; Itaconic acid polymers; Itaconic acid; itakonik asit; ITAKONIK AT; TAKONK AST; TAKONK ASD; TAKONK; TACONIC ACID; TAKONK AST; TAKONK; TAKONAT; ITACONIC ACIDE; TAKONK ASDE; TAKONK AST; itakonik asit; itaconic aid; taconc acd; itaconic acid; iitaconate; itaconic acid; taconc; itaconic; 2-Methylenesuccinic acid; itaconate; Itaconic acid polymers; TAKONK AST; itakonik asit; Propylenedicarboxylate; itakonik asit; itakonik asit; methylene-butanedioicaci; itakonik asit; ACMC-1CFCS; itakonik asit; Itaconic acid; TAKONK AST; Propylenedicarboxylate; TAKONK AST; methylene-butanedioicaci; ACMC-1CFCS; Itaconic acid,2-Methylenesuccinic acid; METHYLENESUCCINIC ACID ; Propylenedicarboxylic acid; Methylenebutanedioic acid; itaconate; Butanedioic acid, methylene-; Itaconic acid; itakonik asit; ITAKONIK AT; TAKONK AST; TAKONK ASD; TAKONK; TACONIC ACID; TAKONK AST; TAKONK; TAKONAT; ITACONIC ACIDE; TAKONK ASDE; TAKONK AST; itakonik asit; itaconic aid; taconc acd; itaconic acid; iitaconate; itaconic acid; taconc; itaconic; 2-Methylenesuccinic acid; itaconate; Itaconic acid polymers; TAKONK AST; Propylenedicarboxylate; methylene-butanedioicaci; ACMC-1CFCS; Itaconic acid, >=99%; TAKONK AST; itakonik asit;MolPort-001-779-972;Itaconic acid, analytical standard;ZINC895261;KS-00000W8Q;NSC-3357;Tox21_201299;Tox21_303071;ANW-40876;BBL011584;BDBM50036216; TAKONK AST; LMFA01170063; TAKONK AST; MFCD00004260; TAKONK AST; STL163322;50976-31-3 (hydrochloride salt);AKOS000118895; itakonik asit; 5363-69-9 (di-hydrochloride salt); TAKONK AST; itakonik asit; MCULE-5221256796;NE10303;RP19897;RP19898;RTX-012445;TRA0065458;Butanedioic acid,ethylidene-,(E)-(9ci);NCGC00249019-01;NCGC00257141-01;NCGC00258851-01;AJ-24165;AN-24459;AS-11816;KB-53018;LS-45750;AB1003031;LS-180669;Succinic acid, methylene-, polymers (8CI);FT-0627543;M0223;ST24040898;C00490;74477-EP2269983A1;74477-EP2269984A1;74477-EP2308857A1;S04-0117;I14-42909;Z57127539;F2191-0234;2-METHYLENE,1,4-BUTANEDIOIC ACID (ITACONIC ACID)1; 53EEC7A3-4846-4588-BBC9-CB8846377B96; InChI=1/C5H6O4/c1-3(5(8)9)2-4(6)7/h1-2H2,(H,6,7)(H,8,9; ITN; itakonik asit; Itakonik asit; Itaconic acid; 97-65-4; Itaconic acid; itakonik asit; ITAKONIK AT; TAKONK AST; TAKONK ASD; TAKONK; TACONIC ACID; TAKONK AST; TAKONK; TAKONAT; ITACONIC ACIDE; TAKONK ASDE; TAKONK AST; itakonik asit; itaconic aid; taconc acd; itaconic acid; iitaconate; itaconic acid; taconc; itaconic; 2-Methylenesuccinic acid; itaconate; Itaconic acid polymers; TAKONK AST; Itaconic acid; itakonik asit; ITAKONIK AT; TAKONK AST; TAKONK ASD; TAKONK; TACONIC ACID; TAKONK AST; TAKONK; TAKONAT; ITACONIC ACIDE; TAKONK ASDE; TAKONK AST; itakonik asit; itaconic aid; taconc acd; itaconic acid; iitaconate; itaconic acid; taconc; itaconic; 2-Methylenesuccinic acid; itaconate; Itaconic acid polymers; TAKONK AST; Propylenedicarboxylate; methylene-butanedioicaci; ACMC-1CFCS; Itaconic acid; TAKONK AST; Propylenedicarboxylate; methylene-butanedioicaci; ACMC-1CFCS; Itaconic acid,2-Methylenesuccinic acid; METHYLENESUCCINIC ACID ; Propylenedicarboxylic acid; Methylenebutanedioic acid; itaconate; Butanedioic acid, methylene-;Itaconic acid;2-Methylenesuccinic acid; itaconate; Itaconic acid polymers; TAKONK AST; Propylenedicarboxylate; methylene-butanedioicaci; ACMC-1CFCS; Itaconic acid, >=99%; itakonik asit; MolPort-001-779-972;Itaconic acid, analytical standard;ZINC895261;KS-00000W8Q; NSC-3357; Tox21_201299; Tox21_303071; ANW-40876; BBL011584; DBM50036216; LMFA01170063; MFCD00004260; STL163322; 50976-31-3 (hydrochloride salt);AKOS000118895;5363-69-9 (di-hydrochloride salt);MCULE-5221256796;NE10303;RP19897;RP19898;RTX-012445;TRA0065458;Butanedioic acid,ethylidene-,(E)-(9ci);NCGC00249019-01;NCGC00257141-01;NCGC00258851-01;AJ-24165;AN-24459;AS-11816;KB-53018;LS-45750;AB1003031;LS-180669;Succinic acid, methylene-, polymers (8CI);FT-0627543;M0223;ST24040898;C00490;74477-EP2269983A1;74477-EP2269984A1;74477-EP2308857A1;S04-0117;I14-42909;Z57127539;F2191-0234;2-METHYLENE,1,4-BUTANEDIOIC ACID (ITACONIC ACID)1;53EEC7A3-4846-4588-BBC9-CB8846377B96;InChI=1/C5H6O4/c1-3(5(8)9)2-4(6)7/h1-2H2,(H,6,7)(H,8,9;ITN; itaconic acid ; TACONC ACD; itaconic acid ; itaconic acid ; taconc acd; Itaconc Acd; takonik Asit; TAKONK AST; takonik asit; ITACONIC ACIT; TACONC ACT; itaconic acit; itaconic acit; taconc act; Itaconc Act; takonik Asid; TAKONK ASD; itakonik asid; takonic Acid; itakonic acid; TAKONC ACD; takonik Asit; takonik Acid

 

 

 

 

 

taconic Acid 

itaconic acid

 

 

Skeletal formula

Ball-and-stick model

Names

Preferred IUPAC name

2-Methylidenebutanedioic acid

Other names

2-Methylenesuccinic acid

Methylenesuccinic acid[1]

1-Propene-2-3-dicarboxylic acid

Identifiers

CAS Number

97-65-4 ☑

3D model (JSmol)

Interactive image

ChEBI 

CHEBI:30838 ☑

ChEMBL 

ChEMBL359159 ☑

ChemSpider 

789 ☑

ECHA InfoCard 100.002.364

KEGG 

C00490 ☑

PubChem CID

811

CompTox Dashboard (EPA)

DTXSID2026608 Edit this at Wikidata

InChI[show]

SMILES[show]

Properties

Chemical formula

C5H6O4

Molar mass 130.099 g·mol-1

Appearance White solid

Density 1.63 g/cm3[1]

Melting point 162 to 164 °C (324 to 327 °F; 435 to 437 K) (decomposes)[1]

Solubility in water

1 g/12 mL[1]

Solubility in ethanol 1 g/5 mL[1]

Magnetic susceptibility (χ)

-57.57·10-6 cm3/mol

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☑ verify (what is ☑☒ ?)

Infobox references

itaconic acid , or methylidenesuccinic acid, is an organic compound. This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid.

 

 

Production

Since the 1960s, taconic acid is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus.[2]

 

For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is vitaconic acid glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate vtaconic acid cis-aconitate-decarboxylase.[3]

The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate vtaconic acid aconitate-Δ-isomerase (Adi1).[4] trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1).[4]

taconic acid is also produced in cells of macrophage lineage and as such it has in vitro activity against bactertaconic acid expressing the enzyme isocitrate lyase such as Salmonella enterica and Mycobacterium tuberculosis.[5]

However, cells of macrophage lineage have to “pay the price” for making itaconate, and they lose the ability to perform mitochondrial substrate-level phosphorylation.[6]

 

Laboratory synthesis

Dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid .[7]

 

 

Reactions

Upon heating, itaconic anhydride isomerizes to citraconic acid anhydride, which can be hydrolyzed to citraconic acid (2-methylmaleic acid).[8]

 

 

Steps in conversion of citric acid to citraconic acid via itaconic acids.

Partial hydrogenation of itaconic acid over Raney nickel affords 2-methylsuccinic acid.[9]

 

 

itaconic acid is primarily used as a co-monomer in the production of acrylonitrile butadiene styrene and acrylate latexes with applications in the paper and architectural coating industry.

itaconic acid 

itaconic acid has broad applications manufacture of absorbents, phosphate-free detergents, cleaners, and bioactive compounds.

 

From: Refining Biomass Residues for Sustainable Energy and Bioproducts, 2020

 

Related terms:

BiomassAcrylic AcidMonomersProteinDiafiltrationCitric Acid

 

 

itaconic acid 

itaconic acid or methylene succinic acid is a high-value platform chemical that finds application in polymer industry, wastewater treatment, and ion-exchange chromatography sector (Willke and Vorlop, 2001). It can be converted to 3-methyltetrahydrofuran that has superior emission and combustion properties when compared to gasoline. Industrial production of itaconic acid is carried out with A. terreus using glucose as the sole carbon source. itaconic acid production by metabolically engineered Neurospora crassa using lignocellulosic biomass was evaluated by Zhao et al. (2018). Cis-aconitic acid decarboxylase gene was heterologously expressed in N. crassa to synthesize itaconic acid . The engineered strain was capable of producing itaconic acid (20.41 mg/L) directly from lignocellulosic biomass.

 

itaconic acid production from biomass hydrolyzate using Aspergillus strains was reported by Jiménez-Quero et al. (2016). Acid and enzymatic hydrolyzates were evaluated for the production of itaconic acid . Maximum itaconic acid production (0.14%) was observed when submerged fermentation was carried out with corncob hydrolyzate by A. oryzae. The study reveals the possibility of SSF of biomass for the production of itaconic acid .

 

Klement et al. (2012) evaluated itaconic acid production by Ustilago maydis from hemicellulosic fraction of pretreated beech wood. One of the advantages of U. maydis is that the strain grows as yeast-like single cells, and it can survive under high osmotic stress. The study revealed that under mild pretreatment conditions, U. maydis would be a promising candidate for itaconic acid production. Fine tuning of pretreatment conditions should be carried out for the improved production of itaconic acid .

Production itaconic acid 

itaconic acid is an example of a di-carbonic unsaturated acid. These acids are used as building blocks for large numbers of compounds, such as resins, paints, plastics, and synthetic fibers (acrylic plastic, super absorbants, and antiscaling agents) [67]. The CAC intermediate cis-aconitate is enzymatically processed by cis-aconitate dehycarboxylase (CadA) to produce itaconic acid [68]. At the industrial scale the most explored organism for the fermentative production of itaconic acid is Aspergillus terrus. The biosynthetic pathway of itaconic acid is like citrate biosynthesis, where the flux of the CAC is used in the catalytic conversion of cis-aconitate into itaconic acid . Thus citrate is synthesized from oxaloacetate and acetyl CoA, while oxaloacetate is synthesized from pyruvate by anaplerosis, which starts from the pyruvate that is the end product of glycolysis

itaconic acid 

itaconic acid is an important building block in the chemical industry. It is a white crystalline powder and readily biodegrades in soil. Hence, it is an optimum substitute for petro-derived chemicals such as acrylic acid, maleic anhydride, or acetone cyanohydrin in various end-user industries. The demand for itaconic acid is high in the manufacturing of superabsorbent polymers, mainly used in diapers, adult incontinence, and feminine hygiene products. itaconic acid is used as a cross-linking agent due to its ability to efficiently take part in addition polymerization. It also finds large application in seed coating, root dipping, ornamental gardens, food packaging, and artificial snow. Moreover, increasing demand for unsaturated polyester resins in pipes, artificial stones, electrical cabinets, and laminating resins is expected to increase the demand for itaconic acid . High price of itaconic acid is the major factor hampering the growth of itaconic acid market. Polyitaconic acid (a derivative of itaconic acid ) has the potential to replace sodium tripolyphosphate in detergents. However, strong establishment of other phosphate-free builders impedes the growth of itaconic acid in detergents application. Other application segments include lubricant oil, adhesives, paints and coatings, pharmaceuticals, emulsifiers, herbicides, printing chemicals, and acrylic fiber. The global market is estimated to be worth around US $126 million/kg (TMR, 2015). The production in China has boomed, and as a result, the market price decreased to around US $2/kg or even lower (Boy and Lappe, 2012).

 

itaconic acid is a biobased product mainly produced by fermentation using certain filamentous fungi (e.g. Ustilago, Helicobasidium, and Aspergillus). A mixture of itaconic acid , citraconic acid, and citraconic anhydride is also obtained by reaction of succinic anhydride with formaldehyde at 200-500°C in the presence of alkali or alkaline earth hydroxides (could at least partially be biobased if biobased succinate is used as raw material for the production of succinic anhydride). Other methods involve carbonylation of propargyl chloride with metal carbonyl catalysts and thermal decomposition of citric acid, which is also a biobased chemical. Aspergillus terreus is the strain commonly used for the industrial production of itaconic acid . A significant amount of research has been put into the reduction of the production costs: the replacement of sugar, used as the carbon source, by cheaper alternative substrates such as cellulolytic biomass; optimizing the bioreactor type and configuration; deriving innovations by which the process becomes more energy saving; strain improvement by genetic and metabolic engineering, allowing the effective use of cheap alternative substrates, etc. Recent patent activity has particularly focused on the improvement of the producing strain, mainly by using recombinant DNA techniques, and several patents have been submitted worldwide in the last 10 years. There is a significant market opportunity for the development of biobased products from the C5 building block, itaconic acid . The major challenges are primarily associated with reducing the overall cost of the fermentation. It was estimated that in order to render the products derived from biobased itaconic acid competitive with petrochemical-derived products, the fermentation cost needed to be below US $1/kg, which is a significant technical challenge and should be undertaken with a longer-term perspective.

itaconic acid is a dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. It has a role as a fungal metabolite and a human metabolite. taconic acid is a dicarboxylic acid and an olefinic compound. taconic acid derives from a succinic acid. taconic acid is a conjugate acid of an itaconate(2-).

 

ChEBI

itaconic acid is an intermediate in the C5-Branched dibasic acid metabolism, a substrate for the enzyme Succinate-CoA ligase (ADP-forming) (EC:6. 2. 1. 5)(Kegg).

 

 

Description of taconic acid

Application of taconic acid

itaconic acid (IA) can be used:

• As a comonomer in the polymerization of polyacrylonitrile (PAN) to promote the thermo-oxidative stabilization of polymer.[1]

• In combination with acrylamide to form (poly[acrylamide-co-(itaconicacid)]) to synthesize biodegradable superabsorbent polymers.[2]

• To synthesize biobased polyester composite in fabric industry.[3]

 

 

Packaging

1 kg in poly bottle

 

100 g in poly bottle

 

Properties of taconic acid

Related Categories Building Blocks, C1 to C5, Carbonyl Compounds, Carboxylic Acids, Chemical Synthesis,

More…

assay ≥99%

autoignition temp. 1472 °F

mp 165-168 °C (lit.)

density 1.573 g/mL at 25 °C (lit.)

SMILES string OC(=O)CC(=C)C(O)=O

 

 

Abstract

The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current itaconic acid market. itaconic acid manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for itaconic acid synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.

 

 

Keywords: Bio-based chemicals, Bio-based polymers, Fungal fermentative processes, itaconic acid , itaconic acid polymers, itaconic acid trading market, Sustainable materials

Go to:

Introduction

The world demand for eco-friendly products is constantly growing. Many bioprocesses are under development to align the environmental and economic aspects of manufacturing renewable products, which are not all feasible yet (Bailey 2016). The continuing effort and research, associated with government policies that promote sustainable programs, effectively nurtures the growth of bio-based product market (Report Linker 2017).

 

Bio-based organic acids are part of the portfolio of profitable and renewable chemicals. The combination of those two important factors results in an increasing demand of those acids. Moreover, the stringent restrictions imposed by governmental regulators in many countries have been encouraging companies to seek alternative renewable products and biotechnological processes (Report Linker 2017). The challenge is not only to obtain eco-friendly products, but to have equivalency in quality and quantity for competing with the products already available on the corresponding market (Bailey 2016).

itaconic acid (IA) is a bio-based chemical with great potential for the chemical market and attractive end use applications (Weastra 2012). Even though the chemical properties of the organic acid enable a vast possibility of applications, itaconic acid is currently considered a niche market (Transparency Market Research 2015). The expected expansion of itaconic acid on the appropriate market depends on the development of the technologies for producing itaconic acid and its derivatives. Innovation, price competitiveness, and global expansion are key components for any product to achieve success in the renewable market. Improvements in production medium, as well as the application of the most appropriate fermentation conditions for achieving high itaconic acid yield, are some of the investigations regarding the develop of technologies for itaconic acid production (Krull et al. 2017).

 

Go to:

itaconic acid origin and definition

itaconic acid can be synthesized either chemically or biochemically. The former has never been produced commercially due to the numerous stages for itaconic acid synthesis and the low efficiency of the process, while the latter is obtained by fermentation mainly using filamentous fungi with a significant production yield (Pfeifer et al. 1952; Kautola et al. 1989). A more detailed description about itaconic acid production is presented in later sections.

 

itaconic acid is presented in the form of white crystals and it is chemically defined as an unsaturated dicarboxylic acid with one of the carboxylic groups conjugated to a methyl group. Some of itaconic acid characteristics are listed on Table 1.

Properties of taconic acid molecule (Zhang et al. 2013; PubChem 2017)

 

IUPAC name 2-Methylidenebutanedioic acid

Synonyms Itaconic acid; 2-methylenesuccinic acid; methylelesuccinic acid; propylenedicarboxylic acid; methylenebutanedioic acid

Abbreviation IA

CAS Number 97-65-4

Molecular formula C5H6O4

Molar mass (g/mol) 130.09874

Melting point 165-168 °C

Appearance (Color) White

Appearance (Form) Powder or crystals

Density (g/cm3 at 25 °C) 1.573

Solubility in water (g/100 mL, 20 °C) 8.31

Acidity (pKa) pKa1 = 3.84

pKa2 = 5.55

Go to:

A brief history about IA

taconic acid was discovered in 1837, described by Baup as a product obtainable from the pyrolysis of citric acid and it was named citric acid (Turner and Liebig 1841; Kane et al. 1945; Tate 1967). In 1840, Crassus described it as the product of the third stage of thermal decomposition of citric acid and proposed the name itaconic acid (Turner and Liebig 1841). At that time, the chemical route was the only one known.

 

The taconic acid chemical synthesis is as follows:

distillation of citric acid;

oxidation of isopropene or from mesityl oxide to citraconic acid and subsequent isomerization;

carboxylation of acetylene derivatives, for example, propargyl chloride or butynoates;

condensation of succinate or succinic anhydride with formaldehyde to generate citraconic acid with subsequent isomerization.

This sequence of chemical reactions, however, is not economically feasible. The requirement for several stages resulted in an unsatisfactory yield and used components that were not readily available (Merger and Liebe 1991).

taconic acid was first polymerized by Swarts as a form of ethyl ester in 1873 (Tate 1967). Dialkyl ester polymers were developed with properties close to glass at a process that lasted about 3 days (Hope 1927). Despite the interesting properties, it was only possible to obtain taconic acid at a low scale due to the already mentioned low efficiency of the chemical route, which was a potential limitation for obtaining the end-product on a large scale.

In 1931, Kinoshita first reported the production of taconic acid by the microbial route. In his study, a filamentous fungus isolated from salted prune juice was cultivated under surface fermentation conditions in the presence of concentrated solutions of sugars and high concentrations of chlorides, reaching yield of up to 0.24 (g IA/g substrate). Because the used microorganism was an taconic acid producer, the filamentous fungus was named Aspergillus itaconicus (Kinoshita 1931). The production condition of that study, however, was never developed commercially (Kane et al. 1945).

Calam et al. (1939) presented that some A. terreus strains produced taconic acid in Czapek-Dox medium containing 50 g/L of glucose. That was the first study which demonstrated that A. terreus was able to produce taconic acid (0.12 g IA/g substrate after 25 days). The authors also showed that not all strains-5 out of the 6 strains tested-produced this organic acid to the extracellular medium at the conditions used (Calam et al. 1939).

The homopolymerization of taconic acid was described in 1958, which was done with hydrochloric acid and potassium persulfate (Marvel and Shepherd 1959). Because of the interesting properties of taconic acid polymers, further investigation was done to reach higher final concentrations of taconic acid from different strains.

According to Miall (1978), in 1945, Moyer and Coghill evaluated 30 A. terreus cultures from the traditional microbial cell bank Northern Regional Research Laboratory (currently, Agricultural Research Service-ARS), identifying the strain NRRL 265 as the only taconic acid producer. In the same year, Lockwood and Reeves analyzed 308 strains isolated from soil samples and A. terreus NRRL 1960 was chosen for pilot scale processes (Willke and Vorlop 2001). Since then, A. terreus strain NRRL 1960 has been the most studied among researchers to obtain IA. A. terreus NRRL 1960 is stored in different international cell banks with the following codes: ATCC 10020, ATCC 20589, DSM 826, CBS 11646, among others (NRRL 2017).

The production of taconic acid by microbial route was first patented in 1945 (Kane et al. 1945). Pfizer Company accomplished 28% of the theoretical yield for producing taconic acid with sucrose after 14 days of fermentation (Kane et al. 1945). taconic acid was included in the company’s product portfolio in 1945 (Okabe et al. 2009).

Other bioprocess conditions allowed Lockwood and Ward (1945) to obtain 30 g of taconic acid from 100 g of glucose (42% of the theoretical yield). In the following years, the strain Aspergillus terreus NRRL 1960 was used for larger scale production, with different nitrogen sources in a 20 L bioreactor (Nelson et al. 1952). At that stage, studies were done on a large scale (between 1130 and 2270 L), and in semi-continuous fermentation (Pfeifer et al. 1952). Other microorganisms have been reported as taconic acid producers, such as Ustilago zeae (Miall 1978), and by a number of Candida sp. strains (Horitsu et al. 1983).

In 2004, taconic acid was listed as one of the 12 most promising chemicals available from biomass according to the United States Department of Energy report (Werpy and Petersen 2004). The document selected taconic acid and 11 others from an initial list of more than 300 bio-based building blocks regarding the potential markets of the chemicals and their derivatives, and the technical complexity in producing those chemicals. Since that report, which included succinic, fumaric and malic acid among other chemicals, taconic acid gained a significant interest in the scientific community and it stimulated vast research about the improvement in taconic acid production and its applications (Kuenz et al. 2012; Klement and Büchs 2013).

The homopolymerization process of taconic acid on a large scale was a challenge in the early 21th century (Werpy and Petersen 2004). The improvement of the economic feasibility for obtaining taconic acid depended on the development of the polymerization techniques that would decrease production cost to produce the homopolymer. That barrier was overcome by researchers from the University of New Hampshire, and the technology was licensed to Itaconix®, which proceeded to develop taconic acid products from the poly(itaconic acid) (PIA) (Durant 2011).

More recently, taconic acid was identified to be secreted by mammalian immune cells, such as macrophages, responsible for the antimicrobial activity by those cells in situations of inflammatory conditions (Sugimoto et al. 2011). taconic acid was previously detected in the lungs from mice infected with tuberculosis, but it had been assumed that the metabolite was produced by the contaminating bactertaconic acid (Shin et al. 2011; Cordes et al. 2015). Michelucci et al. (2013) identified that, in mammalian cells, taconic acid is produced by the immunoresponsive gene 1(Irgl), a highly expressed gene by macrophages in inflammation. That taconic acid characteristic was explored by Bajpai et al. (2016) as a component of antimicrobial biofilm with potential application in the biomedical field.

 

Go to:

taconic acid producer microorganisms

Some microorganisms are able to synthesize IA, but with different productions capacities. The main taconic acid producers are from the species A. terreus, which are used for producing the acid on a commercial scale (Saha 2017). The requirement for systems that result in higher taconic acid productivity and higher yields (product/consumed substrate) encourages many researchers to find different taconic acid producers (Voll et al. 2012). Table 2 lists some of the producing microorganisms, as well as the characteristic of the process.

 

It is noticed that the filamentous fungus strain Aspergillus terreus produces the highest taconic acid concentrations in glucose medium, but Ustilago maydis is also a promising microorganism for taconic acid synthesis. The technical difficulties regarding the use of filamentous fungus compared to bactertaconic acid or yeast encourage the research for different taconic acid producers. The bioprocess with filamentous fungi is usually sensitive to hydro-mechanical stress in submerged fermentation (Voll et al. 2012) and its filamentous growth characteristics can be operationally more complicated than other microorganisms mentioned.

Ustilago maydis is a basidiomycete, which is a non-pathogenic microorganism when presented as a free-living yeast-like cell and plant pathogenic as the filamentous form (Levinson et al. 2006; Rafi et al. 2014). Despite the advantages of using basidiomycete, the highest production obtained from that microorganism is about 0.2 g IA/g glucose (Maassen et al. 2014), which is still much lower than the highest concentrations produced by A. terreus (0.48 IA/g glucose) in batch fermentation in laboratory scale (Kuenz et al. 2012).

Although research tends to focus on Aspergillus and Ustilago strains, different studies have demonstrated taconic acid production capacity by other microorganism species. Helicobasidium mompa produces taconic acid at low values – 0.25 to 0.5 g/L taconic acid (Araki et al. 1957). Candida sp. (Tabuchi et al. 1981) was genetically modified and it produced about 0.35 g IA/g glucose. Despite the potential results, to the best of the authors knowledge, no further studies were presented regarding taconic acid production by that Candida sp. Pseudozyma antarctica was also reported as taconic acid producer, which synthesized 0.1 g IA/g substrate, in medium containing either glucose or fructose (Levinson et al. 2006). Genetically modified E. coli was also less efficient than A. terreus, with final production of about 0.14 g IA/g glucose by the fourth day of fermentation (Okamoto et al. 2014). Despite the different strategies applied for taconic acid production with other microorganisms, A. terreus is still the current, dominant choice for taconic acid production on a commercial scale.

The urge of increasing taconic acid production also drives research on metabolic manipulation of microorganisms (Kuenz et al. 2012). Genetic modification has been done on Aspergillus niger, which is expected to produce higher taconic acid concentrations than the bioprocess done with A. terreus, since the latter produces over 200 g/L of citric acid (also an organic acid) and has a very similar metabolic system to its parental strain (Blumhoff et al. 2013). The efforts done to promote taconic acid production capacity on A. niger have been an important tool for comprehension of the taconic acid pathway in A. terreus (Steiger et al.2016).

 

Go to:

Metabolic system of taconic acid production by Aspergillus terreus

Different studies regarding the metabolic pathway of taconic acid synthesis have been done mainly with A. terreus (Tevz et al. 2010; Huang et al. 2014a, b). Currently, it is highly accepted that cis-aconitate decarboxylase (CAD) is responsible for the final transformation of cis-aconitate to itaconate (Hossain et al. 2016; Jiménez-Quero et al. 2016).

 

 

In taconic acid synthesis from glucose, the substrate enters the cell and it is degraded mainly vtaconic acid the glycolysis route. Both malate and pyruvate produced in the cytosol enters the mitochondrtaconic acid to the TCA cycle, where cis-aconitate is produced. Cis-aconitate is transported to the cytosol through a mitochondrial tricarboxylate transporter (Mtt), where CAD synthesizes the itaconate production (Li et al. 2013). Finally, itaconate is externalized through major facilitator superfamily proteins (MFS). The kinetic profile of taconic acid production shows that a slow or null cell growth rate prevails during taconic acid production (Kuenz et al. 2012). This is explained by the deviation of cis-aconitate from the mitochondrtaconic acid to the cytosol, i.e., the TCA cycle is incomplete and cell growth is limited or null. Figure 1 illustrates the metabolic pathway from glucose.

taconic acid large-scale production

The process of taconic acid production was well described by Okabe et al. (2009). According to the authors, the industrial production of taconic acid is a five-step process. The fermentation step concerns in taconic acid synthesis from microorganism, whose cells are removed together with other solid particles at the end of the process by filtration process. The solid-free broth goes to the concentration step where a liquid of over 350 g/L of taconic acid is obtained. The concentrated liquid passes through two series of crystallization processes, at 15 °C. The crystals formed are decolorized by treatment with activated charcoal at 80 °C. In the case of a large-scale industrial process, the decolorization process can be optimized. The decolorized broth is evaporated and recrystallized before going to the drying and packing steps. If the production requires a high degree of purity, the product goes through a purification process, such as solvent extraction, ion exchange, and a new decolorization. Each stage has high efficiency for recovering IA: 95% in the filtration step, 98% of the concentration process, and 95% in the crystallization and drying. The total recovery of the process is approximately 80%. The production steps are illustrated in Fig. 3.

 

 

An external file that holds a picture, illustration, etc.

Object name is 13205_2018_1151_Fig3_HTML.jpg

Fig. 3

Diagram of itaconic acid industrial production by A. terreus

 

 

Go to:

taconic acid global production

taconic acid was first commercially produced by Pfizer Company, in 1945. Since then, other companies such as Iwata Chemical (started at 1970, in Japan), Rhodtaconic acid (started at 1995, in France), and Cargill (started at 1996, in the USA) have been great producers (Okabe et al. 2009). The production interruption by Cargill, Pfizer, and Rhodtaconic acid made China the current largest taconic acid producer (El-Imam and Du 2014).

 

China has been receiving robust investments from companies and from the Chinese government, including in bioprocesses industries. The increasing research background, human resources, and financial support has provided the biotechnology industry growth over recent years in that country (Huang et al. 2010).

Among many Chinese companies that produces IA, the Qingdao Kehai Biochemistry Company is responsible for about 50% of the total capacity of taconic acid production in China, or 18% worldwide, with 10,000 Mt/year (Huang et al. 2010). That company is part of the Qingdao Langyatai Group and exports taconic acid (not final products nor derivates) mainly to North and South America, and Western and Eastern Europe (China 2017).

The last reports show that only three countries are currently responsible for the world production: China, India, and USA (Global Industry Analysis 2016). The main current players are Alpha Chemika (India), Chenggdu Jindai Biology Engineering Co., Ltd. (China), Jinan Huaming Biochemistry Co., Ltd. (China), Qingdao Kehai Biochemistry Co., Ltd. (China), Shandong Kaison Biochemistry Co., Ltd. (China), Zhejiang Guoguang Biochemistry Co., Ltd. (China), and Itaconix Co. (USA).

In fact, the Asia-Pacific region market should serve as an example for developing the taconic acid market in other countries. The existence of many domestic manufactures among taconic acid players in that region represents the moderately fragmented taconic acid market. The development of technologies and applications addressed to those niche and local markets may be the key strategy to expand taconic acid production in other countries (Global Market Insights 2016).

One example of targeting local opportunities is the possibility of growth in Europe because of product control by the government. Currently, European Union regulations to stop the manufacture of detergents produced from sodium tri(poly)phosphate (STPP) may be substituted with taconic acid derivatives. In Germany, the taconic acid market benefits from environmental government practices and its size reached 2.8 million in 2015. South Africa, Saudi Arabia, and the United Arab Emirates may also be targets for taconic acid applications as a result of rising preferences for bio-based products in those countries (Global Market Insights 2016).

 

Go to:

Medium requirement for a high yield taconic acid production

Multiple parameters influence metabolites production, such as medium composition, pH, temperature, the presence or absence of trace elements, and many others (Vrabl et al. 2012). Among them, the carbon source used is very important for producing economic feasible IA. The requirement of high initial concentration of sugars to obtain high yields reflects on high cost with feedstock if pure substrates, such as glucose or sucrose, are used.

 

The knowledge about the sufficient concentration to be used for high taconic acid production without the use of excessive substrate affects the production final cost and depends on the strain. The highest taconic acid yields (> 0.8 mol taconic acid mol glucose) are achieved with over 100 g/L of glucose by A. terreus NRRL 1960, without a significant increase neither decrease in the final yield with substrate up to 200 g/L (Karaffa et al. 2015). Different results were obtained with A. terreus NRRL 1963, which presented an inhibition effect with concentrations higher than 160 g/L of glucose (Welter 2000). Kuenz et al. (2012), however, showed that similar concentrations are obtained by A. terreus NRRL 1993, A. terreus NRRL 1960, and A. terreus DSM 23081 (0.7 mol IA/mol glucose).

Considering the kinetics properties of CAD, an essential enzyme for taconic acid production, its KM value for its main substrate, cis-aconitic acid, is 2.45 mM at pH 6.2 and 37 °C (Dwiarti et al. 2002). The low affinity to its substrate in taconic acid synthesis indicated by the high KM value demonstrates the need for high substrate concentration for achieving high production yields (Cordes et al. 2015).

Different nitrogen sources, such as yeast extract or corn steep liquor, were used in the early studies (Pfeifer et al. 1952), but the complexity and varied composition of those reactants are undesirable factors for developing a stable production platform. taconic acid fermentation with urea or ammonium nitrate resulted in low fermentation rates according to Nelson et al. (1952) and Pfeifer et al. (1952). However, ammonium nitrate (NH4NO3) has been used as nitrogen source in many other studies with high taconic acid yield (Kautola et al. 1991; Kuenz et al. 2012).

Regarding the nitrogen source concentration, Vassilev et al. (1992) showed that, for immobilized cells, the rate of taconic acid production in the absence of nitrogen is higher than with an initial concentration of 4 g/L of NH4NO3. Those results indicated that the nitrogen consumption is related to cell production rather than taconic acid synthesis (Vassilev et al. 1992). Welter (2000) evaluated the combination of NH4NO3 with KH2PO4, and it was observed that, for initial 94 g/L of glucose, minimal cell growth and high taconic acid production are obtained with 0.08 g/L KH2PO4 and 2 g/L of NH4NO3. Kuenz et al. (2012) chose to use 3 g/L NH4NO3 rather than 1.5 g/L to avoid insufficient nitrogen source supply, even though both the initial concentrations of NH4NO3 resulted in similar results.

Other medium components can influence taconic acid production such as Fe, Mn-below 5 µg/L (Karaffa et al. 2015), Mg, Cu, Zn, P, N, and carbon source concentration (Batti and Schweiger 1963; Kautola et al. 1991; Willke and Vorlop 2001; Li et al. 2012; Karaffa et al. 2015).

 

Go to:

taconic acid production by low-cost feedstock

Studies have shown that some residues are suitable as carbon source for taconic acid production, with some examples presented on Table 2. The limitations of taconic acid production in some medtaconic acid are related to A. terreus sensitivity to medium impurities, which are not yet well defined (Hiller et al. 2014). However, the literature does not detail which components and at which concentration they impair taconic acid production. Despite that sensitivity, some studies show the capacity of A. terreus to produce taconic acid from waste material. The importance in evaluating taconic acid production from residues relies on the possibility of taconic acid production in different countries depending on the abundance of the specific residue. Using low-cost feedstock from local source, taconic acid production economic feasibility may promote further application to the market.

 

Reddy and Singh (2002) showed that 20 and 30 g/L taconic acid were produced, respectively, from market refuse fruits and hydrolyzed corn starch with A. terreus mutant. Petruccioli et al. (1999) obtained 18 g IA/L from corn starch feedstock, while Dwiarti et al. (2007) obtained about 50 g IA/L using hydrolysate sago starch. The use of molasse medium requires a previous treatment for removing the impurities for a high taconic acid yield process (Maassen et al. 2014).

Corn cob, a lignocellulosic residue, was used in a two-step process: first, xylanase was produced by A. terreus, which was further used on the second step of the process concerning the hydrolysis of the lignocellulosic feedstock (with addition of commercial xylanase) for obtaining fermentable sugars for taconic acid production, also by A. terreus (about 8 g/L IA) (Kocabas et al. 2014). A different lignocellulosic material, beech wood hydrolysate, was used for taconic acid production and about 13 g/L taconic acid was produced by A. terreus in solid-state reactor after the removal of phenolic components with anion and cation exchangers (Sieker et al. 2012).

Sieker et al. (2012) showed that taconic acid production was only achieved when beech wood hydrolysate was detoxified by a mixture of anion and cation exchangers (among other pretreatment analyzed), achieving maximum concentration of almost 4.5 g IA/L for a submerged culture (glucose and xylose from hydrolyzed wood). The treatment used almost completely removed the phenolic compounds and organic acids and decreased the salt ions, whereas rice husks hydrolysate pretreated with CaO(s) produced 1.9 g/L taconic acid (Pedroso et al. 2017).

taconic acid production from residues should consider the cost for feedstock treatment to evaluate a real feasibility of the material. A wider knowledge of the potential inhibitors is important for using less expensive carbon sources with minimal pretreatment (Klement and Büchs 2013).

 

Go to:

Aspergillus terreus oxygen strict requirement for taconic acid production

Different studies described the direct relation between aeration and taconic acid production, and the requirement for continuous oxygen supply throughout the bioprocess is of significant important. Pfeifer et al. (1952) and Nelson et al. (1952) were probably the first to report the need for continuous aeration to reach high taconic acid yields. Nelson et al. (1952) described that a 20 min interruption in the air flow after 54 h of fermentation was enough to drastically decrease taconic acid production rates (the values were not detailed). Pfeifer et al. (1952) described that it was only possible to reverse the damage of no taconic acid production (related to 15-60 min interruptions in air flow) if extranutrients were added to the medium. Despite the occurrence of further taconic acid production, the final taconic acid concentration was lower compared to the assay which was continuously aerated.

 

The aeration requirement for maintaining the cell’s capacity of producing taconic acid is so important that Larsen and Eimhjellen (1955) conducted the separation of IA-producing A. terreus cells-non-proliferating mycelia-from the fermentation broth with constant aeration. The authors described that if the aeration process was not maintained throughout the separation process, the endogenous taconic acid was not expelled to the extracellular medium (acidified tap water).

Riscaldati et al. (2000) showed that during the cell growth phase, there is a higher demand for oxygen, as well as for phosphorous and nitrogen consumption. When cell concentration reached a slow cell growth rate, the dissolved oxygen (DO) slowly increased from under 20% DO to almost 40 or 80% DO, depending on the initial pH or aeration rate. Kuenz et al. (2012) also described the occurrence of a drastic decrease of dissolved oxygen to 20% DO in the beginning of the fermentation (the first day of a 10 days’ fermentation). However, by the 8th day until the end of the fermentation, the value was not higher than 40% DO. The continuous need for oxygen supply even when cell growth is at low rates indicates that oxygen requirement is higher for taconic acid production than cell maintenance.

Gyamerah (1995) showed that A. terreus cultivated in glucose medium had different behavior in taconic acid production after 1, 3, 5, or 10 min of interruption of oxygen supply after 100 h of fermentation. By the third day, the reestablishment of aeration-after stopping air supply for 10 min-resulted in, at most, only 52% of the taconic acid produced on the assay with continuous oxygen supply by the third day. That behavior was similar to the observations by Lin et al. (2004). The shorter interruption periods (3 and 5 min) resulted in less severe decrease of taconic acid production (respectively, about 77% and 66% less taconic acid compared with the assay without interruption) (Gyamerah 1995). This indicates that the capacity of taconic acid production after the pause in oxygen supply is also related to the duration of the interruption period.

The reason for the significantly lower taconic acid production when oxygen supply is completely interrupted has not yet been clarified. Based on the evaluation of different studies, this study states the following hypothesis: the system responsible for the drastic interruption of taconic acid production, which is related to the period of interruption in oxygen supply, might be related to an inhibition effect of cis-aconitate inside the mitochondrtaconic acid or the cytosol.

A requirement of a readily transportation system of cis-aconitate from the mitochondrtaconic acid to the cytosol has been evidenced (Huang et al. 2014a, b). Cis-aconitic acid is unstable in environments with a pH under 7 (Ambler and Roberts 1948), and it is spontaneously converted to trans-aconitic acid, the thermodynamically more stable form of the substance (Steiger et al. 2016). Trans-aconitate has been described as an inhibitor of at least two mitochondrial enzymes-aconitase (Laube et al. 1994) and fumarase (Rebholz and Northrop 1994). At sufficient oxygen concentration, A. terreus promptly transports cis-aconitate to the cytosol by Mtt transporter (from the mitochondrtaconic acid to the cytosol), which is further converted to itaconate by CAD (Huang et al. 2014a, b).

In the occasion of aeration interruption, the energy applied for transporting H+ and taconic acid could be impaired. The Mtt transporters would have a lower activity in the absence of oxygen, and cis-aconitate would accumulate inside the mitochondria. In the occasional malfunctioning of H+ transportation due to the lack of oxygen, the pH inside the cell would decrease and promote the formation of trans-aconitate, and thus, the inhibition of important enzymes from the TCA cycle. Such inhibition effect would prevent further taconic acid production and substrate consumption, as the enzymatic system would be damaged. The longer the period of interruption in oxygen supply, the greater the conversion of cis to trans-aconitate might be.

The hypothesis also suggests that the negative effect of cis-aconitate conversion to trans-aconitate during the lack of oxygen supply is more effective to the mitochondrial enzymatic system. The supposition may be supported by the observation of Gyamerah (1995) studies, who showed that the inhibition of mitochondrtaconic acid membrane transporters results in higher decrease of taconic acid production (> 90%) than the inhibition of cell membrane transporters (< 9%).

 

Go to:

taconic acid production and medium pH

In taconic acid production systems, environments in which the pH is not regulated during the fermentation, the microorganism tends to acidify the medium to a very low pH (< 2). taconic acid synthesis is strongly related to the initial pH, as the entire or part of the enzymatic system responsible for taconic acid production may function in an acid environment (Larsen and Eimhjellen 1955). Different metabolites were produced depending on the pH value considered for regulating the entire fermentation process. In pH 2.1, the main products by A. terreus were IA, carbonic gas, and cells, while the fermentation in pH 6 produced L-malic, succinic, fumaric acids, carbon dioxide, and cells (Larsen and Eimhjellen 1955).

 

Among the existing hypotheses for the transport of organic acids to the extracellular medium by microorganisms, three of them are described below (Vrabl et al. 2012).

Hypothesis of overflow metabolism The expulsion of organic acids out into the extracellular medium is considered one of the mechanisms employed by the cell to release energy in a situation in which growth is limited by a non-carbon nutrient and a carbon source is in excess. The hypothesis is subdivided in relation to the location of the bottleneck causing this release, which may be glycolysis, TCA cycle, or respiratory chain. In several studies, the phenomenon of overflow metabolism is associated with the increase of glycolytic flow;

Hypothesis of charge balance It is considered that when the H+/substrate transport system is prevented, the transport of the organic acid anions is the main form of compensation of the ion flow for the excretion of H+ by the enzyme H+-ATPase. This operation prevents the plasma membrane from being hyperpolarized in a way detrimental to the cell. In an environment where pH is low, most of the excreted protons return to the interior of the cell vtaconic acid the protons of nutrients. In an environment with high pH, especially in cultures with NaOH addition as a control of the excreted protons, the entrance of the proton into the cell is impaired, requiring a new charge flow. The release in the medium of organic acids can balance the proton flow almost stoichiometrically.

Hypothesis of aggressive acidification The hypothesis, developed for A. niger strain, describes that the filamentous fungus releases the acid in the extracellular environment, and the acid environment results in a medium with less probability of contamination from other microorganisms. Assuming that the organic acids transported through the membrane are completely protonated (uncharged), these compounds would be the major source of acidification of the medium.

Krull et al. (2017) demonstrated that the need for an acid environment, with fermentation broth pH under 2, is only essential in the beginning of the fermentative process. Their findings with a genetically modified A. terreus strain showed that, after the initial drop to 1.6, which is necessary for taconic acid production, the rise and maintenance of the pH at 3-3.4 increases the final taconic acid concentration (around 150 g/L IA). The optimized condition that allowed such concentration involved not only pH adjustment, but also a fed-batch operating system. The final yield of 0.58 g IA/g glucose is, thus, not higher than other studies without pH regulation.

 

Go to:

Advances in taconic acid research and intellectual properties

The analysis of research trends provides an indication of the state-of-the-art technology applied to IA. Scopus® [one of the largest abstract and citation database of peer-reviewed literature (Scopus 2017)] and Derwent World Patent IndexTM (DWPI) [one of the most comprehensive collection of global patent data in English (Clarivate 2017)] were used to compile, respectively, scientific articles and patent documents to evaluate the scientific and technological advances in taconic acid production.

 

The set of articles was selected using the following criteria: English scientific articles containing the words “itaconic acid” on the title, published from 1910 (earliest year available on the database) to 2016. The set of patents was selected with similar standard: patents containing the words “itaconic acid” on the title published from 1910 (earliest year available on the database) until 2016. The databases provided 640 articles and 1033 patents, from which important information such as title, abstract, publication year, and priority country of the patents-first country where the invention is filled (OECD 2017)-were used to evaluate the advances of taconic acid technologies.

The number of scientific articles and patent increased significantly during the period analyzed (Fig. 4), which confirms the high interest in developing technologies regarding taconic acid production and its derivatives. The steep slope observed for the profile of number of patents, which initiated in 2007, corresponds mostly to the numerous Chinese patents about taconic acid published on that period-76% of the 509 patents published from 2007 to 2016. The frequent world crises that result in drastic fluctuations of oil prices highly motivated the development of alternative technologies to partially substitute products from non-renewable sources (Macrotrends 2017), including the development of taconic acid technologies. In China, the investments from government and companies increased the country’s participation in the advances of the world’s research (Huang et al. 2010).

 

An external file that holds a picture, illustration, etc.

Object name is 13205_2018_1151_Fig4_HTML.jpg

Fig. 4

Number of scientific articles and patent documents selected from the databases Scopus® and Derwent World Patent IndexTM, respectively. The documents selection was done considering articles and patents which contained the words “itaconic acid” on the title, published from the initial years available on the databases until 2016. For the article selection, the documents were restricted to the English language. Scientific articles (orange line) and patent documents (blue line)

 

Figure 5 represents a classification of the most recent articles, published from 2012 to 2016, which were separated by the main subject addressed by each document. The studies related to the development of taconic acid derivatives represent 80% of the total articles in that period, and the second most frequent subject was the development of taconic acid fermentative processes, with 18% of the studies analyzed. It was not observed a significant fluctuation of the number of articles that concerns those classifications throughout the period analyzed. The scientific articles about the metabolic pathway of taconic acid production, including the improvement of different strains for higher yield production, were less frequent, with only 2% of the articles from the analyzed period. The evaluation indicates that the recent research concerning taconic acid is substantially more directed for developing taconic acid end-products the rather than the advances in fermentative processes and microorganism modification for improving the final taconic acid yield.

 

An external file that holds a picture, illustration, etc.

Object name is 13205_2018_1151_Fig5_HTML.jpg

Fig. 5

Number of scientific articles from the database Scopus containing on the title the words “itaconic acid”, published from 2012 to 2016. Each of the 210 articles was characterized by the main subject related to itaconic acid (IA) synthesis or application: polymer development or application (blue bars), fermentative process development (yellow bars), study of metabolic pathway (orange bars), and the total number of articles in each year (black line)

 

The most recent patents analyzed, published from 2012 to 2016 (348 patent documents), were separated by the priority country or its region. The priority country of a patent is frequently where the requesting institution is located. The analysis indicated that 86% of the inventions were first patented in China, which is a further indicator of that country’s high interest in developing taconic acid technology. The second region where taconic acid patents were mostly deposited is Astaconic acid (5%), which Japan is the priority country with more than 60% of those patents. The USA and Europe occupies the third and fourth positions (respectively, 4 and 3.4% of the total patents from 2012 to 2016). South America was the priority country for only 0.86% of the patents from the analyzed period. This reflects the robust Chinese investment in taconic acid technologies and the Chinese position on the current global taconic acid market (section taconic acid global market).

The analysis of the advances in taconic acid innovations, whether by the published articles or patents, indicates that the taconic acid technology development is currently more directed to the improvement of taconic acid products and their applications. It is important to note that the high number of patent documents evidences the significant interest of the organic acid application, as many patents are deposited by companies or institutions with the intention to apply the inventions on the market. This is a high indication of the expansion of taconic acid on the available market for renewable sources. Moreover, it shows that improvements for taconic acid processes have been done, and that the interest in taconic acid products concern different counties, but mainly China, which is also the current greater taconic acid world producer (Global Industry Analysis 2016).

 

Go to:

Conclusion

Itaconic acid (IA) is a promising bio-based chemical with vast application in chemical industry. The increasing demand of bio-based products is a gateway for the development of taconic acid derivatives. The current knowledge about taconic acid metabolic pathway mainly by Aspergillus terreus allows a good understanding of its synthesis process, but further comprehension such as inhibitory components is necessary to achieve high yields with residue feedstocks. taconic acid current niche market may increase with innovation and specific market targeting, in addition to the use of low-cost feedstock.

 

 

Currently, crude oil, natural gas and coal are still the primary raw materials for the production of chemicals. The increasing concern on sustainability, environmental conservation and energy shortage drives the search for viable, renewable and environmental friendly alternatives to replace fossil resources as raw material for the production of important chemicals. Plant biomass is considered to be the most feasible alternative as it is a sustainable resource and does not liberate fossilized carbon. Many chemicals such as succinic acid , 1,3-propanediol and ethanol which were hitherto made from petroleum refining are now being successfully produced from renewable biomass.

Among these chemicals, Itaconic Acid (IA) is an important platform chemical which has a wide range of actual and potential applications. It can be used to replace a wide range of petroleum based chemicals, e.g. acrylic acid, which will reduce dependence on petroleum and the attendant deleterious environmental effects. In spite of this, it only occupies a niche market because of its high cost relative to acrylic acid and other alternatives thus limiting its use to low volume markets. It is mainly produced by the fermentation of sugars with Aspergillus terreus with limited success with bacterial and yeast fermentations. This review discusses the physico-chemical properties of IA, current and potential uses of itaconic acid, the microorganisms used in IA synthesis, the fermentation processes, conditions and future perspectives in itaconic acid applications.

 

 

 

Itaconic acid, or methylidenesuccinic acid, is an organic compound. This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid.

Laboratory synthesis and reactions

Dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid Upon heating, itaconic anhydride isomerizes to citraconic acid anhydride, which can be hydrolyzed to citraconic acid (2-methylmaleic acid). 

Steps in conversion of citric acid to citraconic acid via itaconic and aconitic acids.

Production

Since the 1960s, it is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus. 

For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is via glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate via cis-aconitate-decarboxylase. 

The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1). trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1). 

Itaconic acid is also produced in cells of macrophage lineage and as such it has in vitro activity against bacteria expressing the enzyme isocitrate lyase such as Salmonella enterica and Mycobacterium tuberculosis. 

However, cells of macrophage lineage have to “pay the price” for making itaconate, and they lose the ability to perform mitochondrial substrate-level phosphorylation. 

Application

Itaconic acid is primarily used as a co-monomer in the production of acrylonitrile butadiene styrene and acrylate latexes with applications in the paper and architectural coating industry

 

 

 

Itaconic acid Applications And Market

Itaconic acid and its polymers are currently utilized in numerous applications as drop-in or novel substitute monomer, where they sometimes confer favourable characteristics on the end product which makes it superior to the conventional substitutes. Common end products of IA polymerization reactions include polyitaconic acid (PIA) and styrene-butadiene rubber (SBR) latex made from the polymerization of styrene, butadiene and itaconic acid. Itaconic acid can potentially replace acrylic acid for use in the production of superabsorbent polymers with improved properties, and maleic anhydride which is currently used in the production of Unsaturated Polyester Resins (UPR); while PIA can replace sodium tripolyphosphate (STPP) used in detergents. Acrylate latexes supplemented with IA can be used as non-woven fabric binders, and a copolymer of IA and acrylonitrile is also easier to dye than many other polymers while carpets containing IA as a sizing agent have enhanced resistance to abrasion.

 

 

 

Industry Uses Itaconic acid

Adhesives and sealant chemicals

Agricultural chemicals (non-pesticidal)

Not known or reasonably ascertainablePaint additives and coating additives not described by other categories

Plasticizers

 

 

 

Consumer Uses Itaconic acid 

Adhesives and sealants

Agricultural products (non-pesticidal)

Apparel and footwear care products

Not known or reasonably ascertainable

Paints and coatings

 

 

 

Itaconic acid

Itaconic acid was first synthesized in 1837 by the thermal decarboxylation of citric acid.7 Further synthetic approaches were reported, but none of them proved to be economically compatible.8 Itaconic acid is an organic acid that is used as a platform chemical for the production of various value added chemicals such as poly-itaconic acid, resins biofuel components, ionomer cements etc. Itaconic acid and its derivatives have wide applications in the textile, chemical and pharmaceutical industries. The depletion of fossil fuels and the need for sustainable development require that fermentative itaconic acid production replace petroleumbased methods of itaconic acid production. Among these chemicals, Itaconic Acid (IA) is an important platform chemical which has a wide range of actual and potential applications. It can be used to replace a wide range of petroleum based chemicals, e.g. acrylic acid, which will reduce dependence on petroleum and the attendant deleterious environmental effects. In spite of this, it only occupies a niche market because of its high cost relative to acrylic acid and other alternatives [5] thus limiting its use to low volume markets. It is mainly produced by the fermentation of sugars with Aspergillus terreus with limited success with bacterial and yeast fermentations Itaconic acid is a naturally occurring unsaturated 5-C dicarboxylic acid which is also known as methylenesuccinic acid or methylenebutanedioic acid [6]. Itaconic acid was first described by Baup in 1836 when he discovered it as a product of citric acid distillation. Itaconic acid has the stoichiometric formula C5H6O4 and a molar weight of 130.1 g/mol. It exists as white to light beige crystals with a density of 1.573 g/mL at 25°C, a melting point of 165-168°C and a flash point of 268°C [6]. It dissolves in water up to 80.1 g/L at 20°C which makes it quite easy to purify by crystallization [7]. In a recent study IA was also found to dissolve well in several alcohols including methanol, 2-propanol and ethanol with the solubility increasing with temperature [8]. Itaconic acid is also readily biodegradable in nature.

 

Itaconic acid is valuable as a monomer because of its unique chemical properties, which derive primarily from its methylene group and its possession of two carboxylic acid groups. Itaconic acid is able to take part in addition polymerization, giving polymers with many free carboxyl groups that confer advantageous properties on the polymer. It can either be self-polymerised or can act as a co-monomer with other monomers to form heteropolymers [9]. It has two protonation states with pKa values of 3.85 – 5.45 and with a degree of reduction of 3.6, it is just a little more oxidised than glucose with a value of 4.0 [10]. Itaconic acid is about twice as acidic as acrylic acid and more reactive than maleic and fumaric acids which are potential monomeric substitutes [11].

Itaconic acid readily forms a range of metallic salts and diesters such as dimethyl itaconate and di-n-butyl itaconate both of which are available commercially. Itaconic anhydride may be used for the preparation of mono esters such as monomethyl itaconate or react with amines to yield N-substituted pyrrolidones with actual or proposed uses in greases, detergents, shampoos, herbicides and pharmaceuticals. A condensate of lauric acid and aminoethylethanolamine reacts with IA to give an imidazoline derivative which is an active ingredient in shampoos [7]. Recently two new itaconic acid derivatives (-)-9-hydroxyhexylitaconic acid, and (-)-9-hydroxyhexylitaconic acid-4-methyl ester were discovered as metabolites of Aspergillus aculeatus CRI322-03 [12].

The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1).[4] trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1).[4]

Itaconic acid is also produced in cells of macrophage lineage and as such it has in vitro activity against bacteria expressing the enzyme isocitrate lyase such as Salmonella enterica and Mycobacterium tuberculosis.[5]

However, cells of macrophage lineage have to “pay the price” for making itaconate, and they lose the ability to perform mitochondrial substrate-level phosphorylation.[6]

 

 

Laboratory synthesis Itaconic acid 

Dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid.[7]Itaconic acid is a dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. It has a role as a fungal metabolite and a human metabolite. It is a dicarboxylic acid and an olefinic compound. It derives from a succinic acid. It is a conjugate acid of an itaconate(2-).

 

 

 

 

TAKONK AST

takonik asit

 

takonik asit

skelet formülü

Top ve çubuk modeli

simler

Tercih edilen IUPAC ad

2-Metilidenebutanedioik asit

Dier isimler

2-Metilenesüksinik asit

Metilenesüksinik asit [1]

1-Propen-2-3-dikarboksilik asit

Tanmlayclar

CAS numaras

97-65-4 ☑

3D model ( JSmol )

Etkileimli görüntü

Chebi 

Chebi: 30838 ☑

ChEMBL 

ChEMBL359159 ☑

ChemSpider 

789 ☑

ECHA Bilgi Kart 100.002.364

KEGG 

C00490 ☑

PubChem CID

811

CompTox Kontrol Paneli ( EPA )

DTXSID2026608 Bunu Wikidata’da düzenle

InChl[göstermek]

Smiles[göstermek]

Özellikleri

Kimyasal formül

C 5 H 6 O 4

Molar kütle 130.099 g · mol -1

Görünüm Beyaz kat

Younluk 1.63 g / cc 3 : [1]

Erime noktas 162-164 ° C (324-327 ° F; 435-437 K) (ayrr) [1]

sudaki çözünürlük

1 g / 12 mL [1]

Çözünürlük olarak etanol 1 g / 5 mL [1]

Manyetik duyarllk (χ)

-57.57 · 10 -6 cm 3 / mol

Aksi belirtilmedikçe, standart halindeki malzemeler için veriler verilir (25 ° C [77 ° F], 100 kPa’da).

☑ dorula ( nedir ?) ☑☒

Bilgi kutusu referanslar

Itaconic acid veya metilidenesuccinic acid , organik bir bileiktir . Bu dikarboksilik asit , su, etanol ve asetonda çözünen beyaz bir katdr. Tarihsel olarak takonik asit, sitrik asidin damtlmasyla elde edildi , ancak u anda fermantasyon ile üretilmektedir. takonik asit ad , bir baka sitrik asit türevi olan akonitik asidin bir anagram olarak tasarlanmtr .

 

 

ÜRETM

1960’lardan bu yana, fermentasyonu ile endüstriyel olarak üretilmektedir karbonhidratlar gibi glikoz veya molas gibi ler kullanlarak mantar Aspergillus itaconicus veya , Aspergillus terreus . [2]

 

çin A terreus itakonat yolu çok açklanacaktr. konakat için genel olarak kabul edilen yol, glikoliz, trikarboksilik asit döngüsü ve cis- aconitate’nin cis -aconitate-decarboxylase yoluyla iakonata dekarboksilasyonudur. [3]

Isrgan mantar Ustilago maydis alternatif bir yol kullanr. Cis- aconitate , aconitate-Δ-izomeraz (Adi1) yoluyla termodinamik olarak tercih edilen trans- aconitate dönütürülür . [4] trans- Akitit, ayrca trans -akit-dekarboksilaz (Tad1) ile itakonata dekarboksilatlanr. [4]

Itaconic acid ayrca makrofaj soy hücrelerinde üretilir ve bu nedenle Salmonella enterica ve Mycobacterium tuberculosis gibi izositrat liyaz enzimini eksprese eden bakterilere kar in vitro aktiviteye sahiptir . [5]

Bununla birlikte, makrofaj soy hücreleri, itakonat yapmak için “fiyat ödemek” zorundadr ve mitokondriyal substrat düzeyinde fosforilasyon gerçekletirme yeteneini kaybederler. [6]

 

Laboratuvar sentezi 

Sitrik asidin kuru damtlmas , itakonik aside hidrolize giren itakonik anhidrit verir . [7]

 

 

Reaksiyonlar 

Istma üzerine itakonik anhidrid , sitrakonik aside (2-metilmaleik aside) hidrolize edilebilen sitrakonik asit anhidride izomerleir . [8]

 

 

Dönütürülmesinde admlar sitrik asit için sitrakonik asit itakonik üzerinden ve asonitik asit .

Ranon nikeli üzerinde itakonik asidin ksmi hidrojenasyonu 2-metilsüksinik asit verir . [9]

 

taconic acid esas olarak kat ve mimari kaplama endüstrisindeki uygulamalarla akrilonitril bütadien stiren ve akrilat latekslerin üretiminde ortak monomer olarak kullanlr .

Bu çalmada akrilonitril (AN) ve takonik asit (IA) kopolimerleri sentezlenmi ve karakterizasyonlar yaplmtr. Sentezlenen kopolimerler elektroçekim ile nanolif üretiminde kullanlmtr. Farkl oranlarda takonik asitiçeren kopolimerlerinin elektroçekimde nanolif oluumuna olan etkisi aratrlmtr. Hazrlanan nanolif matlarna hava ortamnda sl muamele yaplarak stabilizasyonlar gerçekletirilmitir. Bu çalmann hedefi AN-takonik asitkopolimerlerinden nanolif üretilmesi ve üretilen bu nanoliflerin karbon nanofiber üretimi için uygunluunun hem bilinen karakterizasyon yöntemleri ile hem de uygulamal olarak kantlanmasdr. AN-takonik asitkopolimerleri amonyum persülfat oksidant olarak kullanlarak sulu ortamda, 60 oC’de sentezlenmitir. Be farkl kopolimerin sentezi, ayn koullar altnda farkl monomer besleme oranlar ile gerçekletirilmitir. Üç saat süren kopolimerizasyon sonucunda suda çökelek halinde kopolimer elde edilmitir. Kopolimerler etanol ile ykandktan sonra vakum etüvünde kurutularak kullanlmtr. Öncelikle AN-takonik asitkopolimerlerinin spektroskopik, termal ve mekanik analizleri FTIR-ATR (Fourier Transform Kzlötesi-Azaltlm Toplam Reflektans) ve NMR (Nükleer Manyetik Rezonans) spektrometre, DSC (Diferansiyel Taramal Kalorimetre), TGA (Termal Gravimetrik Analiz) ve DMA (Dinamik Mekanik Analiz) cihazlar kullanlarak yaplmtr. Böylece takonik asitiçeriinin, AN-takonik asitkopolimerlerinin spektroskopik ve termal özellikleri üzerine etkisi aratrlmtr. Kopolimerlerin FTIR-ATR spektrumlarnda 1628 and 1730 cm-1 bantlarnda gözlenen karbonil gerilme piklerinin absorbans deerlerinin, AN ile ilgili olan 2244 cm-1 ‘de gözlenen -C≡N gerilme pikinin absorbans oranladnda takonik asitbesleme artna paralel bir art gözlenmitir. 1H-NMR spektrumlarndan hesaplanan kopolimer kompozisyonlar ile FTIR-ATR spektrumlarndan elde edilen absorbans deerleri ile iliki kurularak bir kalibrasyon erisi türetilmitir. Kopolimerlerin intrinsik viskoziteleri, Ubellohde viskozimetresi kullanlarak belirlenen spesifik viskozite deerlerinden hesaplanmtr. Kopolimerlerde takonik asitartna bal olarak intrinsik viskozite deerleri 2,67 ile 0,92 ml/g arasnda deimitir. DSC ve TGA termal analiz metotlar ile kopolimerlerin stabilizasyonu srasnda gerçekleen halka kapanma, oksidasyon, dehidrojenasyon ve dekompozisyon gibi reaksiyonlarn scaklklar belirlenmitir. DSC erilerinde gözlenen iki ekzotermik pik halka kapanma ve oksidasyon reaksiyonlar ile ilikilendirilmitir. AN-takonik asitkopolimerlerinde halka kapanma reaksiyonlarnn balangç scakl, takonik asitartna bal olarak 222 oC’den 195 oC’ye kadar dümütür. TGA erilerinde gözlenen iki basamakl kütle kaybnn dehidrojenasyon ve dekompozisyonla ilgili olduu düünülmektedir. Dehidrojenasyona kyasla oldukça büyük kütle kaybnnn olduu dekompozisyonun scakl kopolimerlerde takonik asitnn etkisiyle 277 oC’den 257 oC’ye dümektedir. Karbon fiber üretimi için kullanlan polimerlerin dekompoze olmas istenilen bir durum deidir. Stabilizasyon srasnda nitril gruplar oligomerizasyona girerek halkalar olutururken, snn etkisiyle dekompozisyon da görülür. Birbirine pararlel giden iki reaksiyonun scaklk farkna baktmzda takonik asitmiktar arttkça, kopolimerlerde halka kapanma reaksiyonlar baladktan sonra dekompoziyonun daha geç görüldüü tespit edilmitir.Spektroskopik yöntemler ile belirlenen takonik asitiçeriindeki artn, karbon fiber üretiminde önemli bir aama olan stabilizasyonu termal özelliklerini gelitirerek ciddi ekilde etkiledii görülmütür. AN-takonik asitkopolimerlerinden hazrlanan filmlerden belli bir frekansta stlarak ve kuvvet uygulanarak cams geçi scakl (Tg) ölçümleri yaplmr. PAN’n yapsna takonik asitgirdikçe, Tg deerlerin artt görülmütür. Çalmann sonraki aamasnda, AN-takonik asitkopolimerlerinin dimetil formamid (DMF) içerisinde hazrlanan çözeltilerden elektroçekim yöntemiyle nanolifler hazrlanmtr. Tüm kopolimerler için çözelti konsantrasyon, besleme hz ve uzaklk gibi elektroçekim deikenleri sabit tutularak IA’nn nanolif çapna etkisi aratrlmtr. Elektorçekim için çözeltiler kütlece % 5 kat içerecek ekilde hazrlanmtr. rngaya doldurulan kopolimer çözeltisi pompa ile 1 ml/saat debiyle beslenmitir. Kopolimer çözeltilerinden nanolif üretebilmek için gerekli minimum gerilim (9-10,5 kV) uygulanmtr. Topraklama hattna balanm metal plaka rndann ucundan 19 cm uzaa yerletirilmitir. Nanoliflerin morfolojileri taramal elektron mikroskopu (SEM) ile görüntülenmitir. AN-takonik asitkopolimer çözeltilerinden ayn koullar altnda boncuksuz ve sürekli nanolifler elde edilmitir. Ortalama nanolif çaplar, takonik asitartna bal olarak 878±18’den 376±7 nm’ye kadar dütüü görülmütür. Bu deiim asit gruplarnn nanolif oluumundaki yüklerin transferine olan etkisinden kaynakland düünülmektedir. Kopolimerlerin intrinsik viskoziteleri ile nanolif çaplar arasnda bir iliki olduu saptanmtr. ntrinsik viskozitedeki düü, nanolif çaplarnn azalmasna sebep olmutur. Üretilen nanofiber matlar bir sonraki aamada yüksek scaklkta s ile muamele edilerek hava ortamnda oksidatif stabilizasyon gerçekletirilmitir. Stabilize edilen nanofiberlerin renklerinin beyazdan, krmz-kahverengi çeitli renk tonlarna döndüü gözlenmitir. Renk tonlarndaki çeitliliin kopolimerlerde stabilizasyon sonucu oluan konjugasyonun derecesi ile ilgili olduu düünülmektedir. FTIR-ATR spektrometresi kullanlarak halka kapanma reaksiyonlar sonucunda olumas gereken aromatik yaplardaki C-H balarnn titreimlerine ait pikler 805 cm-1 dalga saysnda tespit edilmitir. 2244 cm-1 dalga saysnda gözlenen akrilonitrilin karakteristik C≡N gerilme pikinin sl ilemden sonra sönümlendii, 1585 cm-1 dalga saysnda oluan -C=N yaplar ile ilikilendirilen yeni bir pik olutuu gözlenmitir. Nanofiberler ayrca SEM ile görüntülenerek morfolojik incelemeleri yaplmtr. Isl muamele sonucunda nanofiberlerin çaplarnda azalma gözlenmitir. % 1 takonik asitbeslemesi ile sentezlenen kopolimerden üretilen nanoliflerin çaplar 878±18 nm’den 629±13 nm’ye dümütür. Nanofiberlerin silindirik formda ve çaplardaki azalmann homojen olduu kabulü yaplarak, çaplardaki deiim üzerinden yüzde hacim kayb hesaplanmtr. En düük takonik asitiçeren kopolimerin hacminde % 48,7 lik düü gözlenirken, dier kopolimerlerde hacim deiimi yüzde 20 ile 30 arasnda deimektedir. IA’nn nanoliflerin termal stabilitesini korumaya yardmc olduu, kopolimerlerde yüksek asit miktar ile yüzde hacim kaybnn azalmas ile kantlanmtr. Sonuç olarak, elektroçekim yöntemi ile hazrlanan AN-takonik asitkopolimerlerinin nanofiberlerin karbon nanofiber üretimi için uygun bir balangç maddesi olduu düünülmektedir. DSC ve TGA sonuçlarndan elde edilen kopolimerlerin s ile verdii reaksiyon scaklklarna baklarak stabilizasyonda % 3 ve daha fazla takonik asitbeslemesi ile sentezlenen kopolimerlerin iyi performans gösterecei öngörülmütür. Üretilen nanoliflerin hava ortamnda sl muamelesinden sonra morfolojik incelemeleri yapldnda %1 den yüksek oranda takonik asitile sentezlenen kopolimerlerin nanoliflerinde hacim kaybnn az olduu, yani termal stabilitesini koruduu gözlenmitir.

 

Genel Bak

Hzl Detaylar

Snflandrma:

Karboksil asit

CAS No:

97-65-4

Dier simler:

da methylenesuccinic asit

MF:

c5h4o4

EINECS No:

202-599-6

Snf standart:

Gda snf

Saflk:

99

Görünüm:

beyaz kristal toz

Uygulama:

gda katk

takonik asit 97-65-4

Görünüm: beyaz kristal toz

Saflkta: 99,7% min

Erime noktas: 165-168

Kurutma kayb: 0.1% max

ürün:takonik asit 97-65-4

Görünüm: beyaz kristal toz

Saflkta: 99,7% min

Erime noktas: 165-168

Kurutma kayb: 0.1% max

 

 

1. özellikleri

takonik asit veya metilen sukkinik asit

MW: 130.1; MF: c5h6o4;

 

 

2. kullanmnn%takonik asit( CAS No.: 97- 65- 4):

1) yan çapraz- balama ajan:

takonik asit ve kopolimerizasyonu üretebilir Polistiren ve vinil gibi avantajlara sahip reçine hafiflii, su geçirmez, antipas veiyi plastisite. Cam elyaf dolgu, üretilebilir yan yüksek- Gücü cam çelik. O Ayrca kaplanmaldr kat ve carper Arka yüzü.

2) ara madde olarak sentetik elyaf:

takonik asitile akrilik elyaf üçüncü monomer olarak gibi avantajlar vardr boyanmasiyi bir duygu ve kolay.

3) balayc malzeme olarak:

Bir akrilik emülsiyontakonik asitiçeren mükemmel bir balaycdr non- dokuma elyaf. Büyümesine monomerik pvc balayctakonik asitiçereniyi bir balaycdr kât ve selüloit.

4) üretmekiçin uygulanr deterjanlar: bir kopolimer oluptakonik asit ve akrilik asit antiretroviral polymolecular elat ajan görevi görür deterjaniçin boller ve su- serin sistemi oluumunu önleyerek Temel kalsiyum ve magnezyum pislik.

5) yaptrc üretiminde: akrilik asit emülsiyon yaplmtakonik asit, dahaiyi biriçin yapkan non- woven elyaflarn. takonik asit monomer PVC yaptrclariçerir güçlü yapkan özellii vardr kat ve selüloit.

6) üreten di sticker( yapkan):

takonik asit çapraz arasnda balant akrilik asit ve metal oksit deerlikli sentezlenebiliriçin di Stockeriyi vardr phystolotgic basnç dayanm ve uyum. Dahas, yapabilirmi pyrrolldone türevi tarafndantakonik asit sentez ve amin, hangi bir bileiminde yalayc, deterjan,ilaç ve Herbisit. takonik asit,iyi bir sentetik reçine katk,iyon- deiim reçinesiile yüzey aktif madde,iyi bir plastikletirici Plastik olarak, malzemeler sitrakonik asit ve bunun anhydrinde,, mezakonik asit ve bunun anhidrit.

7) karbon fiber üretimi

8) üretimi stiren- bütadien Lateks karboksilatl

9) üretimi Doymam polyester reçine ve Iyon deitirme reçinesi

10) üretimi Tekstil ayraç ve organik kimyasal reaktif

11) Filigran yazdrma ve yaptrma üretimi ajan, deterjan, ot öldürücü,

Anti- ölçekleme ajaniçerebilir kazanlar ve soutucular ve kart ölçei- ajan Deniz suyuiçin kapal fla kazanlar

12) karmndantakonik asit ve geniletilebilirlik özellikleri mükemmel ok azaltma

ve otomobil çarpmas kullanlabilir redüksiyon ve geniletilebilirlik ve kullanlabilir Otomobil amortisörler

13) üretimi polimerleri emülsiyon akrilik asit, yaptrclar, yalamaiçin svlar matkaplar, liflerinin boyanmas ajanlar kvamlatrclar ve

14) Kaliteli üretimi kaplama veya srtl haliçin veya kat, yan olutururistikrarl emülsiyonlar

15) çimentolama ajan: plastik ve kaplama yardmc kullanlarak üretilmektedirtakonik asit- 1 5 ve% Stireniçin coplymize Hafif avantaja sahiptir, boyamak kolay,izolasyon, ve su geçirmez anti- Korozyon; kullanlabilir yapmay cam elyaf takviyeli plastik yüksek dayanml ya da kat alr hal ve Onun yüzü kat.

16)ilemekiçin kullanlr Saydam:

Polimertakonik asit, ayn özel parlaklk ve effaflk, Uygun yapmnda Yapay talar( elmas) Ve özel amaçl Lens.

 

 

3. artname

Görünüm: beyaz kristal veya toz

Saflkta: 99,7% min

Erime noktas: 165- 168& º; c

Kurutma kayb: 0.1% max

Kontak Kalnt: 0.1% max

Renk: 5 APHA max

Demir( fe): 5 ppm max

Ar metal: 5 ppm max

Klorür: 5 ppm max

Sülfat: 20 ppm max

Cu: 1 ppm max

Mn:: 1 ppm max

 

 

4. Ambalaj

1) 25kg kad- dokuma çantaiç- astarl Plastik çantann.

2) müteriistei üzerine.((such yan çantas veya 1000 kg 500 kg))

 

 

5. Depolama ve tama

Nemden uzak tutmak, güne na, ve yamura. Brakmayn açk alan. Kartrmaynz toksik, odored, renkli veya andrc madde. Cilt veya gözlerle temasndan kaçnnz. Suile ykaynz temas halinde az veya gözile.

 

6. yükleyebilirsiniz bir 20′ fcl 20 ton takonik asit.

 

Üretim takonik asit

takonik asit, di-karbonik doymam asidin bir örneidir. Bu asitler, reçineler, boyalar, plastikler ve sentetik elyaflar (akrilik plastik, süper emiciler ve kireç önleyici maddeler) gibi çok sayda bileik için yap ta olarak kullanlr [67]. CAC ara cis-aconitat, takonik asit üretmek için cis-aconitate dehycarboxylase (CadA) tarafndan enzimatik olarak ilenir [68]. Endüstriyel ölçekte, itakonik asidin fermantif üretimi için en çok kefedilen organizma Aspergillus terrus’tur. takonik asidin biyosentetik yolu sitrat biyosentezine benzer, burada CAC aks cis-aconitate’nin itakonik aside katalitik dönüümünde kullanlr. Bu nedenle sitrat, oksaloasetat ve asetil CoA’dan sentezlenirken, oksaloasetat, glikolizin son ürünü olan piruvattan balayan anapleroz ile piruvattan sentezlenir.

takonik asit

takonik asit kimya endüstrisinde önemli bir yap tadr. Beyaz bir kristal tozdur ve toprakta kolayca biyolojik olarak bozunur. Bu nedenle, çeitli son kullanc endüstrilerinde akrilik asit, maleik anhidrit veya aseton siyanohidrin gibi petro-türevli kimyasallar için optimum bir alternatiftir. takonik asit talebi, çounlukla çocuk bezlerinde, yetikin idrar tutamamalarnda ve kadn hijyen ürünlerinde kullanlan süper emici polimerlerin üretiminde yüksektir. takonik asit, ilave polimerizasyona etkin bir ekilde katlma kabiliyeti nedeniyle bir çapraz balama maddesi olarak kullanlr. Ayrca tohum kaplama, kök daldrma, süs bahçeleri, gda ambalaj ve yapay karda büyük uygulama alan bulmaktadr. Ayrca, borular, suni talar, elektrik dolaplar ve laminasyon reçinelerinde doymam polyester reçinelere olan talebin artmasnn takonik asit talebini artrmas beklenmektedir. Yüksek takonik asit fiyat, takonik asit pazarnn büyümesini engelleyen en önemli faktördür. Politakonik asit (bir takonik asit türevi) deterjanlarda sodyum tripolifosfatn yerini alma potansiyeline sahiptir. Bununla birlikte, dier fosfat içermeyen kurucu maddelerin güçlü bir ekilde kurulmas, deterjan uygulamasnda itakonik asidin büyümesini engellemektedir. Dier uygulama segmentleri arasnda yalama ya, yaptrclar, boyalar ve kaplamalar, farmasötikler, emülgatörler, herbisitler, bask kimyasallar ve akrilik elyaf bulunur. Küresel pazarn 126 milyon ABD Dolar / kg civarnda olduu tahmin edilmektedir (TMR, 2015). Çin’deki üretim patlad ve sonuç olarak piyasa fiyat yaklak 2 ABD Dolar / kg veya daha da dütü (Boy ve Lappe, 2012).

 

 

takonik asit esas olarak belirli filamentöz mantarlar (örn. Ustilago, Helicobasidium ve Aspergillus) kullanlarak fermantasyon yoluyla üretilen biyo bazl bir üründür. Bir takonik asit, sitrakonik asit ve sitrakonik anhidrit karm, süksinik anhidridin, formaldehit ile 200-500 ° C’de alkali veya alkalin toprak hidroksitleri varlnda reaksiyona sokulmasyla da elde edilir (biyo-bazl süksinat, süksinik anhidrit üretimi için hammadde). Dier yöntemler, propargil klorürün metal karbonil katalizörleri ile karbonillenmesini ve ayn zamanda biyo-bazl bir kimyasal olan sitrik asidin termal ayrmasn içerir. Aspergillus terreus, itakonik asidin endüstriyel üretimi için yaygn olarak kullanlan sutur. Üretim maliyetlerinin azaltlmas konusunda önemli miktarda aratrma yaplmtr: karbon kayna olarak kullanlan ekerin selülolitik biyokütle gibi daha ucuz alternatif substratlarla deitirilmesi; biyoreaktör tipinin ve konfigürasyonunun optimize edilmesi; sürecin daha fazla enerji tasarrufu salad yeniliklerin elde edilmesi; genetik ve metabolik mühendislii ile gerinim iyiletirmesi, ucuz alternatif substratlarn vb. 10 yl. C5 yap ta, itaconi’den biyo-bazl ürünlerin gelitirilmesi için önemli bir pazar frsat var

2012-2016 yllar arasnda yaynlanan ve analiz edilen en son patentler (348 patent belgesi), öncelikli ülke veya bölgesi ile ayrlmtr. Patentin öncelikli ülkesi, talepte bulunan kurumun bulunduu yerdir. Analiz, icatlarn% 86’snn ilk olarak Çin’de patentlendiini, bu da ülkenin takonik asit teknolojisini gelitirmeye gösterdii yüksek ilginin bir baka göstergesi olduunu gösterdi. takonik asit patentlerinin en fazla depoland ikinci bölge, Japonya’nn bu patentlerin% 60’ndan fazlasna sahip olduu öncelikli ülke olan Asikonik asittir (% 5). ABD ve Avrupa üçüncü ve dördüncü sray almaktadr (2012-2016 yllar arasnda toplam patentlerin srasyla% 4 ve% 3.4’ü). Analiz edilen döneme ait patentlerin yalnzca% 0,86’s için Güney Amerika öncelikli ülke olmutur. Bu, Çin’in takonik asit teknolojilerine yapt güçlü yatrm ve Çin’in mevcut küresel takonik asit pazarndaki konumunu (Bölüm takonik asit küresel pazar) yanstmaktadr.

 

 

ster yaynlanm makaleler ister patentler olsun, takonik asit inovasyonlarndaki ilerlemelerin analizi, takonik asit teknolojisi geliiminin u anda takonik asit ürünlerinin ve uygulamalarnn iyiletirilmesine yönelik olduunu göstermektedir. Çok sayda patent belgesinin, bulular piyasaya sürmek amacyla irketler veya kurumlar tarafndan yatrld için organik asit uygulamasnn önemli bir ilgisini kantladna dikkat etmek önemlidir. Bu, kaconik asidin yenilenebilir kaynaklar için mevcut pazardaki genilemesinin yüksek bir göstergesidir. Ayrca, takonik asit prosesleri için iyiletirmeler yapldn ve takonik asit ürünlerine olan ilginin farkl ilçeleri ilgilendirdiini, özellikle de u anki daha büyük takonik asit dünya üreticisi olan Çin’i ilgilendirdiini göstermektedir.

 

takonik asit veya metilidenesuccinic acid, organik bir bileiktir. Bu dikarboksilik asit, su, etanol ve asetonda çözünen beyaz bir katdr. takonik asit Halihazrda ham petrol, doal gaz ve kömür kimyasallarn üretimi için hala birincil hammaddedir. Sürdürülebilirlik, çevre koruma ve enerji sknts konusundaki artan endie, fosil kaynaklarnn önemli kimyasallarn üretimi için hammadde olarak deitirilmesi için uygulanabilir, yenilenebilir ve çevre dostu alternatif araylarn yönlendirmektedir. Bitki biyokütlesi, sürdürülebilir bir kaynak olduu ve fosillemi karbonu serbest brakmad için en uygun alternatif olarak kabul edilir. Bugüne kadar petrol rafinasyonu yaplan süksinik asit, 1,3-propandiyol ve etanol gibi birçok kimyasal, yenilenebilir biyokütleden baarl bir ekilde üretilmektedir.

Bu kimyasallar arasnda, Itaconic Acid (IA), çok çeitli gerçek ve potansiyel uygulamalara sahip önemli bir platform kimyasaldr. Çok çeitli petrol bazl kimyasallar deitirmek için kullanlabilir, örn. petrole bamll ve zararl çevresel etkileri azaltacak akrilik asit. Buna ramen, akrilik asit ve dier alternatiflere göre yüksek maliyeti nedeniyle düük ni pazarlarda kullanmn snrlayarak sadece bir ni pazar kaplar. Esas olarak, ekerlerin Aspergillus terreus ile fermentasyonu, bakteriyel ve maya fermentasyonu ile snrl baar ile üretilir. Bu derlemede IA’nin fiziko-kimyasal özellikleri, itakonik asitin mevcut ve potansiyel kullanmlar, IA sentezinde kullanlan mikroorganizmalar, italonik asit uygulamalarnda fermentasyon süreçleri, koullar ve gelecekteki perspektifler ele alnmaktadr.

Halen, ham petrol, doal gaz ve kömür hala kimyasal madde üretimi için birincil hammaddedir. Sürdürülebilirlik, çevrenin korunmas ve enerji ktl konusundaki artan endie, önemli kimyasallarn üretimi için hammadde olarak fosil kaynaklarnn yerini alacak ekilde uygulanabilir, yenilenebilir ve çevre dostu alternatifler arayna yön vermektedir. Bitki biyokütlesi, sürdürülebilir bir kaynak olduu ve fosillemi karbonu serbest brakmad için en uygun alternatif olarak kabul edilir. imdiye kadar petrol rafinasyonundan yaplan süksinik asit, 1,3-propandiol ve etanol gibi birçok kimyasal, imdi yenilenebilir biyokütleden baaryla üretilmektedir.

Bu kimyasallar arasnda, Itaconic Acid (IA) çok çeitli gerçek ve potansiyel uygulamalara sahip önemli bir platform kimyasaldr. Çok çeitli petrol bazl kimyasallarn, ör. petrol bamll ve elik eden zararl çevresel etkileri azaltacak akrilik asit. Buna ramen, akrilik asit ve dier alternatiflere göre yüksek maliyeti nedeniyle sadece ni bir pazar kaplar ve böylece kullanmn düük hacimli pazarlarla snrlar. Esas olarak ekerlerin aspergillus terreus ile fermantasyonu ile bakteriyel ve maya fermantasyonlar ile snrl baar ile üretilir. Bu derleme IA’nn fiziko-kimyasal özelliklerini, itakonik asidin mevcut ve potansiyel kullanmlarn, IA sentezinde kullanlan mikroorganizmalar, fermantasyon süreçlerini, itakonik asit uygulamalarndaki koullar ve gelecekteki bak açlarn tartmaktadr.

Tarihsel olarak itakonik asit, sitrik asidin damtlmasyla elde edilir, ancak u anda fermantasyon ile üretilmektedir. takonik asit ad, bir baka sitrik asit türevi olan akonitik asidin bir anagram olarak tasarlanmtr.

Laboratuvar sentezi ve reaksiyonlar

Sitrik asidin kuru damtlmas, itakonik aside hidrolize giren itakonik anhidrit verir. Istma üzerine itakonik anhidrit, sitrakonik aside (2-metilmaleik aside) hidrolize edilebilen sitrakonik asit anhidride izomerleir.

takonik ve akonitik asitler araclyla sitrik asidin sitrakonik aside dönütürülme admlar.

Üretim

1960’lardan bu yana endüstriyel olarak, Aspergillus itaconicus veya Aspergillus terreus gibi mantarlar kullanlarak glikoz veya melas gibi karbonhidratlarn fermantasyonu ile üretilmektedir.

A. terreus için itakonat yolu çounlukla açkla kavuturulmutur. kononat için genel olarak kabul edilen yol, glikoliz, trikarboksilik asit döngüsü ve cis-aconitate’nin cis-aconitate-decarboxylase yoluyla iconcon’a dekarboksilasyonudur.

Isrgan mantar Ustilago maydis alternatif bir yol kullanr. Cis-aconitate, aconitate-Δ-izomeraz (Adi1) yoluyla termodinamik olarak tercih edilen trans-aconitate dönütürülür. trans-Aconitate ayrca trans-aconitate-decarboxylase (Tad1) ile itakonata dekarboksilatlanr.

Itaconic acid ayrca makrofaj soy hücrelerinde üretilir ve bu nedenle Salmonella enterica ve Mycobacterium tuberculosis gibi izositrat liyaz enzimini eksprese eden bakterilere kar in vitro aktiviteye sahiptir.

Bununla birlikte, makrofaj soy hücreleri, itakonat yapmak için “fiyat ödemek” zorundadr ve mitokondriyal substrat düzeyinde fosforilasyon gerçekletirme yeteneini kaybederler.

Uygulama

Itaconic acid esas olarak kat ve mimari kaplama endüstrisindeki uygulamalarla akrilonitril bütadien stiren ve akrilat latekslerin üretiminde ko-monomer olarak kullanlr

 

 

 

 

takonik asit

Itaconic asit ilk olarak 1837’de sitrik asidin termal dekarboksilasyonu ile sentezlendi.7 Baka sentetik yaklamlar bildirildi, ancak bunlarn hiçbirinin ekonomik olarak uyumlu olmad kantland.8 Itaconic asit, üretimi için bir platform kimyasal olarak kullanlan organik bir asittir. poli-itakonik asit, reçineler biyoyakt bileenleri, iyonomer çimentolar gibi çeitli katma deerli kimyasallar. takonik asit ve türevleri tekstil, kimya ve ilaç endüstrilerinde geni uygulama alanlarna sahiptir. Fosil yaktlarn tükenmesi ve sürdürülebilir kalknma ihtiyac, fermantatif itakonik asit üretiminin petrol bazl itakonik asit üretim yöntemlerinin yerini almasn gerektirir. Bu kimyasallar arasnda, Itaconic Acid (IA) çok çeitli gerçek ve potansiyel uygulamalara sahip önemli bir platform kimyasaldr. Çok çeitli petrol bazl kimyasallarn, ör. petrol bamll ve elik eden zararl çevresel etkileri azaltacak akrilik asit. Buna ramen, akrilik asit ve dier alternatiflere göre yüksek maliyeti nedeniyle sadece ni bir pazar kaplar [5] ve böylece kullanmn düük hacimli pazarlarla snrlar. Esas olarak ekerlerin bakteri ve maya fermantasyonlar ile snrl baar ile Aspergillus terreus ile fermantasyonu ile üretilir. Itaconic asit, ayn zamanda metilenesüksinik asit veya metilenebutanedioik asit olarak da bilinen doal olarak doymam bir 5-C dikarboksilik asittir [6]. Itaconic asit ilk olarak Baup tarafndan 1836’da sitrik asit damtma ürünü olarak kefettiinde tanmlanmtr. takonik asit stokiyometrik formül C5H6O4’e ve 130.1 g / mol molar arla sahiptir. 25 ° C’de 1.573 g / mL younlua, 165-168 ° C erime noktasna ve 268 ° C parlama noktasna sahip beyaz ila açk bej kristaller olarak bulunur [6]. 20 ° C’de 80.1 g / L’ye kadar suda çözünür, bu da kristalizasyon ile saflatrmay oldukça kolaylatrr [7]. Yakn zamanda yaplan bir çalmada, IA’nn, metanol, 2-propanol ve etanol dahil olmak üzere çeitli alkollerde de çözünürlüü ve scaklk ile artt bulunmutur [8]. Itaconic asit ayrca doada kolayca biyolojik olarak bozunur.

 

Itaconic asit, esas olarak metilen grubundan ve iki karboksilik asit grubuna sahip olmasndan kaynaklanan benzersiz kimyasal özellikleri nedeniyle bir monomer olarak deerlidir. takonik asit ayrca polimerizasyona katlabilir ve polimer üzerinde avantajl özellikler kazandran birçok serbest karboksil grubuna sahip polimerler verir. Kendiliinden polimerize olabilir veya heteropolimerler oluturmak için dier monomerlerle birlikte monomer görevi görebilir [9]. PKa deerleri 3.85 – 5.45 olan iki protonasyon durumuna sahiptir ve 3.6 derecelik bir azalma derecesi ile, 4.0 deeri olan glikozdan biraz daha oksitlenmitir [10]. takonik asit, akrilik asitten iki kat daha asidiktir ve potansiyel monomerik ikameler olan maleik ve fumarik asitlerden daha reaktiftir [11].

takonik asit, her ikisi de ticari olarak temin edilebilen dimetil itakonat ve di-n-bütil itakonat gibi çeitli metalik tuzlar ve diesterleri kolayca oluturur. Itaconic anhydride, monometil itakonat gibi mono esterlerin hazrlanmas için kullanlabilir veya greslerde, deterjanlarda, ampuanlarda, herbisitlerde ve farmasötiklerde gerçek veya önerilen kullanmlarla N-ikameli pirolidonlar vermek üzere aminler ile reaksiyona girebilir. Laurik asit ve aminoetiletanolamin kondensat, ampuanlarda aktif bir bileen olan imidazolin türevi vermek üzere IA ile reaksiyona girer [7]. Son zamanlarda Aspergillus aculeatus CRI322-03’ün metabolitleri olarak iki yeni itakonik asit türevi (-) – 9-hidroksiheksikonikonik asit ve (-) – 9-hidroksiheksikonikonik asit-4-metil ester bulunmutur [12].

A. terreus için itakonat yolu çounlukla açkla kavuturulmutur. kononat için genel olarak kabul edilen yol, glikoliz, trikarboksilik asit döngüsü ve cis-aconitate’nin cis-aconitate-decarboxylase yoluyla cis-aconitate’nin iakonata dekarboksilasyonudur. [3]

Isrgan mantar Ustilago maydis alternatif bir yol kullanr. Cis-aconitate, aconitate-Δ-izomeraz (Adi1) yoluyla termodinamik olarak tercih edilen trans-aconitate dönütürülür. [4] trans-Aconitate ayrca trans-aconitate-decarboxylase (Tad1) ile itakonata dekarboksilatlanr. [4]

Itaconic acid ayrca makrofaj soy hücrelerinde de üretilir ve bu nedenle Salmonella enterica ve Mycobacterium tuberculosis gibi izositrat liyaz enzimini eksprese eden bakterilere kar in vitro aktiviteye sahiptir. [5]

Bununla birlikte, makrofaj soy hücreleri, itakonat yapmak için “bedelini ödemek” zorundadr ve mitokondriyal substrat düzeyinde fosforilasyon gerçekletirme yeteneini kaybederler. [6]

 

 

Laboratuvar sentezi takonik asit

Sitrik asidin kuru damtlmas, itakonik aside hidrolize giren itakonik anhidrit verir. [7] takonik asit, metil hidrojenlerden birinin bir karboksilik asit grubu ile ikame edildii metakrilik asit olan bir dikarboksilik asittir. Bir mantar metaboliti ve bir insan metaboliti olarak rol oynar. Bir dikarboksilik asit ve bir olefinik bileiktir. Bir süksinik asitten türetilir. Bir itakonatn konjugat asididir (2-).

 

 

 

Reaksiyonlar Itaconic acid

Istma üzerine itakonik anhidrit, sitrakonik aside (2-metilmaleik aside) hidrolize edilebilen sitrakonik asit anhidride izomerleir. [8]

takonik asit takonik ve akonitik asitler yoluyla sitrik asidin sitrakonik aside dönütürülme admlar takonik asit, di-karbonik doymam asidin bir örneidir. Bu asitler, reçineler, boyalar, plastikler ve sentetik elyaflar (akrilik plastik, süper emiciler ve kireç önleyici maddeler) gibi çok sayda bileik için yap ta olarak kullanlr [67]. CAC ara cis-aconitat, cis-aconitate Itaconic asit (veya metilenesüksinik asit, CAS 97-65-4) tarafndan enzimatik olarak ilenir, doymam bir organik diasittir. Bu doymamlk, itakonik asidi, bir platform kimyasal olarak akrilik asit için olas bir ikame yapar, çünkü buna ek olarak – benzer ekilde polimerize edilebilir. yonik asit pazar 2011 ylnda 74 milyon ABD dolar olarak tahmin edilmitir ve 2020 ylna kadar 216 milyon ABD dolarna ulaabilir. takonik asit (IA), Aspergillus terreus’un fermantasyonu ile elde edilebilen yenilenebilir bir monomerdir (Willke ve Vorlop, 2001). Yanal vinil ksm nedeniyle akrilik ve metakrilik asitlerle yapsal benzerlikler sunar (Giacobazzi, Gioia, Colonna ve Celli, 2019). IA, ekzo çift ba aza-Michael alcs olduu için polimerlere moleküler karmaklk kazandrmak için frsatlar sunar (Pellis, Hanson ve dierleri, 2019). Bununla birlikte, poli (itakonat) u ana kadar çok az aratrlmtr, çünkü IA’nn kimyasal polikondansasyonu 150 ° C’nin üzerindeki scaklklarda meydana gelir ve Ordelt doygunluuna, CC bann izomerlemesine ve çapraz balanmaya neden olur (ekil 3) (Pellis, Hanson ve dierleri, 2019). Bu tür scaklklarda Ordelt doygunluunu snrlamak için etkili bir çözüm bulunmamakla birlikte, inhibitörler (Satoh, Lee, Nagai ve Kamigaito, 2014) kullanlarak radikal reaksiyonlardan kaçnlabilir (Farmer, Castle, Clark ve Macquarrie, 2015) sitrik asidin damtlmas, 1960’dan beri itakonik asit, A. terreus tarafndan karbonhidratlarn fermantasyonu ile üretilmitir (Mitsuyasu ve dierleri, 2009; Hajian ve Yusoff, 2015). Itaconic acid, dünyann en büyük üreticileri ABD, Japonya, Rusya ve Çin olmak üzere çok sayda endüstride uygulanmtr (Global Industry Analysts Inc., 2011).

Ranon nikeli üzerinde itakonik asidin ksmi hidrojenasyonu 2-metilsüksinik asit verir. [9]

itaconik acid esas olarak kat ve mimari kaplama endüstrisindeki uygulamalarla akrilonitril bütadien stiren ve akrilat latekslerin üretiminde ortak monomer olarak kullanlr.

takonik asit Fiziko-kimyasal Özellikleri

Itakonik acid, metilenesüksinik asit veya metilenebutanedioik asit olarak da bilinen doal olarak oluan doymam bir 5-C dikarboksilik asittir Itaconic asit, Baup tarafndan ilk olarak 1836’da sitrik asit damtma ürünü olarak kefettiinde tanmlanmtr. takonik asit stokiyometrik formül C5H6O4’e ve 130.1 g / mol molar arla sahiptir. 25 ° C’de 1.573 g / mL younlua sahip beyaz ila açk bej kristaller olarak bulunur.° C, 165-168 ° C’lik bir erime noktas ve 268 ° C’lik bir parlama noktas 20 ° C’de 80.1 g / L’ye kadar suda çözünür, bu da kristalletirme ile saflatrmay oldukça kolaylatrr. Yakn zamanda yaplan bir çalmada IA’nn ayrca, metanol, 2-propanol ve etanol dahil olmak üzere çeitli alkollerde çözünürlüü ve scaklk ile artt bulunmutur. Itaconic asit ayrca doada kolayca biyolojik olarak bozunur.

Itakonik asit, esas olarak metilen grubundan ve iki karboksilik asit grubuna sahip olmasndan kaynaklanan benzersiz kimyasal özellikleri nedeniyle bir monomer olarak deerlidir. takonik asit ayrca polimerizasyona katlabilir ve polimer üzerinde avantajl özellikler kazandran birçok serbest karboksil grubuna sahip polimerler verir. Kendiliinden polimerize olabilir veya heteropolimerler oluturmak için dier monomerlerle birlikte monomer görevi görebilir. PKa deerleri 3.85 – 5.45 olan iki protonasyon durumuna sahiptir ve 3.6 derecelik bir azalma derecesi ile, 4.0 deeri olan glikozdan sadece biraz daha oksitlenmitir. takonik asit, akrilik asitten iki kat daha asidiktir ve potansiyel monomerik ikameler olan maleik ve fumarik asitlerden daha reaktiftir.

takonik asit, her ikisi de ticari olarak temin edilebilen dimetil itakonat ve di-n-bütil itakonat gibi çeitli metalik tuzlar ve diesterleri kolayca oluturur. Itaconic anhydride, monometil itakonat gibi mono esterlerin hazrlanmas için kullanlabilir veya greslerde, deterjanlarda, ampuanlarda, herbisitlerde ve farmasötiklerde gerçek veya önerilen kullanmlarla N-ikameli pirolidonlar vermek üzere aminler ile reaksiyona girebilir. Laurik asit ve aminoetiletanolamin kondensat, ampuanlarda aktif bir bileen olan bir imidazolin türevi vermek üzere IA ile reaksiyona girer. Son zamanlarda Aspergillus aculeatus CRI322-03 metabolitleri olarak iki yeni itakonik asit türevi (-) – 9-hidroksiheksikonikonik asit ve (-) – 9-hidroksiheksikonikonik asit-4-metil ester bulunmutur. 

takonik asit ya da metilidenesüksinik asit, organik bir bileiktir. Bu dikarboksilik asit, su, etanol ve asetonda çözünen beyaz bir katdr. Tarihsel olarak, itakonik asit sitrik asitin damtlmasyla elde edilmitir, ancak u anda fermantasyon ile üretilmektedir. Adonik asit ismi, sitrik asitin baka bir türevi olan bir akonitik asit anagram olarak tasarland.

 

 

 

takonik asit Laboratuvar sentezi ve reaksiyonlar

Sitrik asitin kuru distilasyonu, itakonik aside hidrolize maruz kalan itakonik anhidriti verir. Istma sonras, itakonik anhidrit, sitrakonik asit (2-metilmalik asit) ‘e hidrolize edilebilen sitrakonik asit anhidridine izomerize edilir.

Sitrik asitin sitikonik aside, itakonik ve aconitik asitler ile dönütürülmesindeki basamaklar.

itakonik asit ve polimerleri doal bir madde ekleyerek etkili deodorant haline getirilebilir, amonyum, amin ve hidrojen sülfür gibi alkali veya asidik koku ile reaksiyona girebilir. Ayrca kat ve plastik ince filmde de kullanlabilir. koku giderme fonksiyonu.

 

2. takonik asit, kat kaplamalarda, metal ve beton boyalarda yaygn olarak kullanlan SBR lateksi hazrlamak için stiren ve bütadien ile kopolimerize edebilir. Kaliteyi iyiletirmek için boyalarda kullanlr ve haly daha dayankl hale getirmek için fiber hal boyutlandrma ajan olarak kullanlr.

3. yonik asit, yapmay, renk ve hava direncini arttrmak için emülsiyon kaplama, deri kaplama, araba, buzdolab ve dier elektrikli cihazlar için yaygn olarak kullanlan reçineleri hazrlamak için akrilik ve metakrilik asit veya esterleri ile reaksiyona girebilir. Ayn zamanda metalobidler yardmyla di yaptrcsnda mükemmel yapma özelliine sahip eletroporetik kaplamada da kullanlrlar. Kloroalkil dimetil benzilamonyum klorür eklendiinde, bakteri kontaminasyonunu azaltmak için gda ambalaj için suda çözünebilir kaplama hazrlamak için kullanlabilirler.

4. yonik asit esterleri boya, iyon deitirme reçinesi, yalayc, balayc, plastikletirici, dolgu macunu ve kalplama plastiklerinde kullanlabilir.

5. Dier baz itakonik asit türevleri tp, kozmetik, yalayc, kvam arttrc, herbisit ve yün modifiye edicilerde kullanlmaktadr.

 

 

takonik asit Üretim

1960’lardan beri, endüstriyel olarak Aspergillus itaconicus veya Aspergillus terreus gibi mantarlar kullanlarak glikoz veya melas gibi karbonhidratlarn fermantasyonu ile üretilir.

A. terreus için itakonat yolu çounlukla aydnlatlmaktadr. Genel olarak kabul edilen italonat rotas, glikoliz, trikarboksilik asit döngüsü ve cis-aconitate-dekarboksilaz araclyla itakon haline getirmek için cis-aconitate’nin dekarboksilasyonudur.

Smut mantar Ustilago maydis alternatif bir yol kullanr. Cis-aconitate, aconitate-Δ-izomeraz (Adi1) yoluyla termodinamik olarak tercih edilen trans-aconitate dönütürülür. trans-Aconitate, trans-aconitate-decarboxylase (Tad1) ile ikincil olarak dekarboksile edilir.

Amino asit, makrofaj soyunun hücrelerinde de üretilir ve bununla birlikte, Salmonella enterica ve Mycobacterium tuberculosis gibi enzim izositrat liyazn eksprese eden bakterilere kar in vitro aktiviteye sahiptir.

Bu çalsmada, akrilamid monomeri ile birlikte yardmc monomer itakonik asit ve denetimli salnm sistemlerinde ve potansiyel bir tasyc sistem olarak kullanlabilme olaslklarndan dolay PEG kullanlarak kimyasal çapraz bagl polimerlerin sentezi, karakterizasyonu ve sentezlenen polimerlerin yüzeye sogurum özelliklerinin arastrlmas amaçlanmstr. Kimyasal çapraz bagl akrilamid/itakonik asit/poli(etilen glikol) (AAm/A/PEG) kopolimerleri, çapraz baglayc trimetilolpropan triakrilat (TMPTA) kullanlarak sulu çözeltide serbest radikalik polimerlesme tepkimesi ile hazrlanmstr. Tepkimede baslatc olarak amonyum persülfat, hzlandrc olarak N,N,N’,N’-tetrametiletilendiamin kullanlmstr. Sentezlenen kimyasal çapraz bagl kopolimerlerin yapsal karakterizasyonu Fourier Transform nfrared Spektroskopisi (FT-IR) analizi ile yaplmstr. Sisme karakterizasyonu için akrilamid/itakonik asit/PEG kopolimerlerine 25oC’da dinamik sisme testleri uygulanmstr. Sisme kinetigi ve difüzyon mekanizmas ile ilgili parametreler sisme çalsmalar kullanlarak hesaplanmstr. Kimyasal çapraz bagl akrilamid/itakonik asit/PEG kopolimerlerinin yüzeye sogurum özelliklerini arastrmak için Basic Blue 12 (BB 12) gibi bir boyarmadde ve uranil iyonlarn içeren uranyum asetat gibi iki model molekül seçilmistir. Kimyasal çapraz bagl akrilamid/itakonik asit/PEG kopolimerleri, 25oC’ta BB 12’nin ve uranyum asetatn sulu çözeltileri ile dengeye gelene dek etkilestirilerek sogurum özellikleri arastrlmstr. Deneyler sonunda %53-64 BB 12, %25-57 Uranil iyonu sogurumu saptanmstr.

In this study, it was aimed that synthesis of chemically crosslinked polymers by using acrylamide as monomer with itakonic acid as comonomer and PEG for water-absorbent composite system, characterization and the investigation of adsorption properties of synthesized polymers. Chemically crosslinked acrylamide/itakonic acid/PEG copolymers were prepared by free radical polymerization in aqueous solution using trimethylopropane triacrylate as crosslinkers. Ammonium persulphate as initiator and N,N,N’,N’- tetramethylethylenediamine as accelerator were used in the reaction. Structural characterization of chemically crosslinked acrylamide/itakonic acid /PEG copolymers was made with Fourier Transform Infrared Spectroscopy (FT-IR) analysis. Dynamic swelling tests were applied to chemically crosslinked acrylamide/itakonic acid/PEG copolymers at 25oC for swelling characterization. Parameters about swelling kinetics and diffusion mechanism were calculated by using of the results of swelling studies. Basic Blue 12 (BB 12) and uranium acetate (for uranyl ions) were selected as model molecules to investigate adsorption properties of chemically crosslinked acrylamide/itakonic acid/PEG copolymers. Adsorption properties were investigated by interacting chemically crosslinked acrylamide/itakonic acid/PEG copolymers samples with BB 12 and uranium acetate (for uranyl ions) until equilibrium at 25oC. At the end of the experiments %53-64 BB 12, %25-57 Uranyl ions adsorptions were determined.

 

 

 

Bununla birlikte takonik asit , makrofaj soyunun hücreleri itakonat yapmak için “bedeli ödemek” zorundadr ve mitokondriyal substrat seviyesi fosforilasyonu gerçekletirme yeteneini kaybederler.

takonik asit Uygulama

Itakonic asit öncelikle kat ve mimari kaplama endüstrisindeki uygulamalar ile akrilonitril bütadien stiren ve akrilat lateks üretiminde ko-monomer olarak kullanlr.

 

 

 

takonik asit Uygulamalar ve Pazar

vconik asit ve polimerleri halihazrda drop-in veya yeni ikame monomer olarak çok sayda uygulamada kullanlmaktadr, burada bazen geleneksel ikame maddelerine üstün klan nihai ürün üzerinde olumlu özellikler vermektedirler. IA polimerizasyon reaksiyonlarnn ortak son ürünleri arasnda, stiren, bütadien ve itakonik asitin polimerizasyonundan elde edilen poliitakonik asit (PIA) ve stiren-bütadien kauçuk (SBR) lateksi yer alr. yonik asit, gelitirilmi özelliklere sahip süper emici polimerlerin üretiminde kullanlmak üzere akrilik asidin yerine geçebilir ve u anda Doymam Organik Reçinelerin (UPR) üretiminde kullanlan maleik anhidrit; PIA, deterjanlarda kullanlan sodyum tripolifosfat (STPP) yerini alabilir. IA ile takviye edilmi akrilat lateksler, dokumasz kuma balayclar olarak kullanlabilir ve bir baka polimerden daha fazla boyamak için IA ve akrilonitrilin bir kopolimeri de boyamak için daha kolay olurken, bir boyutlandrma maddesi olarak IA içeren hallar anmaya kar arttrlm bir dirence sahiptir.

takonik asit Sanayi Kullanmlar

Yaptrclar ve dolgu macunu kimyasallar

Tarm kimyasallar (haere öldürücü olmayan)

takonik asit Dier kategoriler tarafndan tarif edilmeyen bilinmeyen veya makul ekilde kesin olarak bilinemeyenPaint katk maddeleri ve kaplama katk maddeleri

plastikletiriciler

 

 

 

takonik asit Tüketici Kullanmlar

Yaptrclar ve szdrmazlk ürünleri

Tarm ürünleri (non-pestisidal)

Giyim ve ayakkab bakm ürünleri

Bilinmiyor veya makul bir ekilde kesin deil

Boyalar ve kaplamalar

 

 

 

takonik asit Fiziko kimyasal özellikleri

Itakonic asit, doal olarak oluan doymam 5-C dikarboksilik asittir ve ayn zamanda metilensüksinik asit veya metilenebütanedioik asit olarak da bilinir. cononik asit, ilk olarak 1836’da Baup tarafndan bir sitrik asit damtma ürünü olarak kefedildiinde tanmlanmtr. takonik asit stoyiometrik formül C5H6O4 ve 130.1 g / mol molar arla sahiptir. 25 ° C’de 1.573 g / mL younlua, 165-168 ° C’lik bir erime noktasna ve 268 ° C’lik bir parlama noktasna sahip açk bej kristallerine kadar beyaz olarak bulunur. 20 ° C’de 80.1 g / L’ye kadar suda çözünür ° C, kristalizasyon ile saflatrmay oldukça kolaylatrr. Yakn zamanda yaplan bir çalmada, IA’nn, metanol, 2-propanol ve etanol dahil olmak üzere çeitli alkollerde çözünürlüü scaklk ile arttnld bulunmutur. Itaconic asit ayrca doada kolayca biyolojik olarak parçalanabilir.

Itakonic asit, esas olarak metilen grubundan ve iki karboksilik asit grubuna sahip olmasndan kaynaklanan benzersiz kimyasal özellikleri nedeniyle bir monomer olarak deerlidir. MONK AST, polimerizasyona ek olarak, polimer üzerinde avantajl özellikler kazandran birçok serbest karboksil grubuyla polimerlere sahip olabilir. Kendi kendine polimerize olabilir veya heteropolimerler oluturmak için dier monomerlerle birlikte bir ko-monomer olarak hareket edebilir. 3,85 – 5,45 pKa deerlerine sahip iki protonasyon durumuna sahiptir ve 3.6 azalma derecesi ile, 4.0 deeri ile glikozdan biraz daha fazla oksitlenmitir. Itaconic asit, akrilik asit kadar asidik asit ve potansiyel monomerik ikame maddeleri olan maleik ve fumarik asitlerden daha reaktiftir.

takonik asit, her ikisi de ticari olarak temin edilebilen dimetil itakonat ve di-n-bütil itakonat gibi bir dizi metalik tuz ve diester oluturur. Amonyum anhidrit, monometil itakonat gibi mono esterlerin hazrlanmas için kullanlabilir veya aminler ile reaksiyona girerek, gliser, deterjan, ampuan, herbisit ve farmasötiklerde fiili veya önerilen kullanmlarla N-ikameli pirrolidonlar verir. Bir laurik asit ve aminoetiletanolamin kondansat, ampuanlarda aktif bir bileen olan bir imidazolin türevini vermek üzere IA ile reaksiyona girer. Son zamanlarda Aspergillus aculeatus CRI322-03’ün metabolitleri olarak iki yeni itakonik asit türevi (-) – 9-hidroksihekzliklitakonik asit ve (-) – 9-hidroksihekzilitakonik asit-4-metil ester bulunmutur.

 

 

Bu çalmada itakonik asit (IA) ve N-izopropilakrilamid (NIPAAm) monomerlerinden farkl pH deerlerinde (pH=3 ve pH=5) hazrlanan kopolimerlerde reaktiflik oranlar hesapland. Reaksiyon süresi, dönüüm en fazla 15% olacak ekilde belirlendi. Kopolimerler sentezlendikten sonra bileimleri kondüktometrik ve potansiyometrik titrasyon yöntemleri ile belirlenmitir. Kalibrasyon erilerinin çizilmesi için önce PIA’in 0.1N NaCI içinde farkl konsantrasyonlarda çözeltileri hazrland. PIA çözeltilerinin titrasyonu potansiyometrik ve kondüktometrik metodlar kullanlarak 0.1N NaOH (F=0.9443) ile yapld. Dönüm noktalar için sarf edilen NaOH hacimleri PIA konsantrasyonuna kar grafie çizildiinde kalibrasyon erileri elde edildi. Kopolimerlerin 0.1N NaCI’de hazrlanan çözeltileri 0.1N NaOH ile titre edildi. Titrasyonda dönüm noktalarna karlk gelen hacim deerleri, kullanlan yönteme uygun kalibrasyon erisinde iaretlenerek, kopolimerlerdeki IA bileimi (FIA) bulundu. Finemann-Ross, Kelen-Tüdös, Geniletilmis Kelen-Tüdös, Mayo-Lewis dorusal ile Tidwell-Mortimer dorusal olmayan metodlar kullanlarak reaktiflik oranlar hesapland.Reaktiflik oranlar beklendii gibi deiiklik göstermi ve pH=3’de IA daha aktif bir komonomer iken pH=5’de NIPAAm daha reaktif duruma geçmitir.

 

In this work the reactivity ratios of itaconic acid (IA) and N-isopropylacrylamide (NIPAAm) copolymers, prepared at different pH values (pH=3 and pH=5), was calculated. Reaction period was kept the conversion up to 15%. The mole fractions of copolymers were determined by using conductometric and potentiometric methods. Firstly, for plotting the calibration curve, the homo PIA was dissolved in 0.1N NaCI in different concentrations. These solutions were titrated by potentiometric and conductometric methods using 0.1N NaOH (F=0.9443). The volumes of the NaOH used in the inflection points versus PIA concentration were plotted in order to obtain the calibration curves. Prepared solutions of copolymers in 0.1N NaCI, titrated with 0.1N NaOH. The NaOH volume requested for the infection points were applied to the appropriate calibration curve to calculate the IA mole fraction (FIA) in the copolymers. Finemann – Ross, Kelen – Tudos, Extended Kelen – Tudos, Mayo – Lewis linear methods and Tidwell – Mortimer, non linear methods used to calculate the reactivity ratios of monomers. Reactivity ratios showed the change with increasing the pH value and IA is active monomer pH=3, while NIPAAm is the active one in pH=5. 

Akriîamid monomeri ile deiik miktarlarda itakonik asitin sulu çözeltileri hazrlanmn’.

Bu çözeltiler yaklak 3 mm çapndaki plastik pipetlere doldurularak Gamacell tipi bir 0Co y

kaynanda deiik sürelerde tutularak farkl nlama dozunda nlanm örnekler elde edilmitir.

Elde edilen örneklere önce ime testleri uygulanmtr.takonik asit 25°C’da yaplan ime denemeleri sonunda, a yap aratrlm, baz ime özellikleri incelenmi ve difüzyonla ilgili baz

hesaplamalar yaplmtr. Hidrojellerin spektroskopik analizi için R spektrmlar FT-ÎR

spektrofotometresinin fotoakustik hücresi kullanlmtr. Issal analiz için DSC tennogramlar takonik asit 

alnm ve mekanik analiz için çekme-uzama denemeleri yaplmtr.

takonik asit ile Yaplan denemeler sonunda jellerde kütlece 900- 2200 arasnda denge yüzde ime, hacimce 1100 – 2800 arasnda denge yüzde ime deerleri bulunmutur. A yapy aydnlatacak

önemli bir parametre olan çapraz balar aras sayca ortalama mol kütlesi (Mc) tüm örnekler

için ay ayr hesaplanmtr. Her örnek için çapraz ba younluu (q) ve difüzyon katsays

(D)ve Özgül difüzyon katsays (Dözg) hesaplanmtr. Ayrca hidrojel sistemleri için difüzyon

türünün Anormal (Fick tipi olmayan) olduu saptanmtr. Spektroskopik analiz sonucu ana zincir

yapsna itakonik asitin girdii ve rastgele kopolimerleme yapt anlalmtr. Issal analiz

sonucu yapya giren itakonik asitin PAAmnin cams geçi scakln düürdüü görülmütür.

Mekanik analiz sonunda ise itakonik asit içeriini artmas ile hidrojelin kopmadaki uzama deeri önce bir art gösterip daha sonra azalma gösterdii bulunmutur.

Akrilamid-itakonik asit hidrojellerinde ime özelliinin itakonik asit deriimi ile artt,

nlama dozu arttkça da azalma gösterdii izlenmitir. Hazrlanan jel sistemlerinin çok iyi

birer su tutucu olduklar gözlenmitir. Hidrojellerin su tutma özellikleri ve yüzde ime deerlerinin bilinmesinin büyük önemi vardr. ime özelliklerinin bilinmesi, hidrojellerin denetimli salnm teknolojisindeki uygulanabilirliklerinin ve endüstriyel kullanlabilirliklerinin bir ölçüsüdür.

 

 

 

 

 

Acide itaconique

 

 

Acide itaconique

Image illustrative de l’article Acide itaconique

Image illustrative de l’article Acide itaconique

Identification

Nom UICPA acide 2-méthylènebutanedioïque

Synonymes 

acide 2-méthylidènesuccinique, acide 1-propène-2-3-dicarboxylique

 

 

No CAS 97-65-4

No ECHA 100.002.364

PubChem 811329770255

SMILES 

[Afficher]

InChI 

[Afficher]

Apparence poudre blanche inodore1

Propriétés chimiques

Formule brute C5H6O4 [Isomères]

Masse molaire4 130,0987 ± 0,0056 g/mol

C 46,16 %, H 4,65 %, O 49,19 %,

pKa 3,84 à 25 °C

5,55 à 25 °C2,3

Propriétés physiques

T° fusion 162 à 167 °C1

T° ébullition 268 °C (décomposition)1

Solubilité 83 g·L-1 (eau, 20 °C)1

76,8 g·L-1 (acétone, 20 °C)5

Masse volumique 1,632 g·cm-31,6

Précautions

SGH7

SGH07 : Toxique, irritant, sensibilisant, narcotique

H315, H319, H335, P261, P305+P351+P338,

[+]

NFPA 7047

Symbole NFPA 704

 

 

020 

Écotoxicologie

LogP -0,3408

Unités du SI et CNTP, sauf indication contraire.

modifier Consultez la documentation du modèle

L’acide itaconique ou acide méthylènesuccinique est un composé organique de la famille des acides dicarboxyliques, de formule C5H6O4. Historiquement, l’acide itaconique a été obtenu par distillation de l’acide citrique, mais il est de nos jours produit par fermentation. Son nom a été créé comme une anagramme de l’acide aconitique, un autre dérivé de l’acide citrique.

 

 

Propriétés

L’acide itaconique se présente sous la forme d’un solide blanc, généralement en poudre, inodore et hygroscopique. Il est combustible mais faiblement inflammable1. Il est soluble dans l’eau, l’éthanol et l’acétone.

 

 

Production

Industrielle

Depuis les années 1960, l’acide itaconique est produit industriellement par la fermentation de sources de glucides tels que le glucose ou la mélasse en utilisant des champignons du type Aspergillus itaconicus ou Aspergillus terreus9.

 

Pour A. terreus la voie métabolique de l’itaconate est à peu près connue. Il est communément accepté qu’elle se déroule via glycolyse, cycle de l’acide tricarboxylique et décarboxylation du cis-aconitate en itaconate par l’action de la cis-aconitate-décarboxylase10.

Le champignon de charbon Ustilago maydis passe par une autre voie. Le cis-aconitate est converti en trans-aconitate par l’action de l’aconitate-Δ-isomérase (Adi1)11. Le trans-aconitate est ensuite décarboxylé en itaconate par la trans-aconitate-décarboxylase (Tad1)11.

L’acide itaconique peut aussi être produit dans les cellules de la lignée des macrophages ; ils ont alors une activité in vitro contre les bactéries exprimant l’enzyme isocitrate lyase telle que Salmonella enterica et Mycobacterium tuberculosis12. Cependant, ces cellules y payent alors le prix en étant plus capable d’effectuer la phosphorylation au niveau du substrat mitochondrial13.

Enfin, il est également possible de biosynthétiser l’acide itaconique à partir de l’acide pyruvique (pyruvate) via l’acide citrique, l’acide citraconique et l’acide itatartarique14. La réaction produit aussi de l’acide succinique et de l’acide itatartarique, indésirables. Leur formation peut être prévenue par l’ajout de calcium qui inhibe l’action de l’acide itaconique oxydase14.

 

En laboratoire

La distillation sèche de l’acide citrique produit de l’anhydride itaconique, qui après hydrolyse est converti en acide itaconique15. Sous l’effet de la chaleur, l’anhydride itaconique s’isomérise en anhydride citraconique qui peut ensuite être hydrolysé en acide citraconique (acide 2-méthylmaléïcque)16.

 

 

Étapes de la conversion de l’acide citrique en acide citraconique via les acides itaconique et aconitique.

Applications

L’acide itaconique sert principalement de co-monomère dans la production de l’acrylonitrile butadiène styrène et des latex acryliques. Il est aussi utilisé dans la production de peintures et revêtements, comme épaississant, dans l’industrie pharmaceutique, comme herbicide et dans la production de polymères biodégradables dans l’industrie de l’emballage.

 

Explore: