NONYL PHENOL 30

Table of Contents

NONYL PHENOL 30

NONYLPHENOL 30

CAS NUMBER: 127087-87-0

 

Synonyms:

nonilfenol 30; nonilfenol 30 etoksile; Nonilfenol 30 etoksile; Nonilfenol etoksile; 

Nonilfenol 30 etoksile; np 30; polioksietilen; Nonylphenol ethoxylate-30; nonilfenol 30 EO; Nonilfenol ETHOXYLATE POE nonil Fenil Eter;

Etoksile nonilfenol; Polioksietilen nonilfenil eter; nonilfenil eter, polietilen glikol, noniyonik; makrogol nonilfenil eter; 

Polietilen Mono (nonilfenil) eter Glikoller; polioksi etilen; polioxyetilen; poli-oksietilen; polioksi-etilen; polioksi,etilen;

akropal; AKROPAL; Nonylphenol ethoxylate-30; Nonylphenol Ethoxylate 30; nonylphenol ethoxylate 30; Nonylphenol Ethoxylate;

Nonylphenol 30 Ethoxylate;polyoxyethylene alkyl phenyl ether; alkyl phenyl polyoxyethylene ether;anti-was agent OP-1021;

KONION NP-2; KONION NP-3; KONION NP-4; KONION NP-5; KONION NP-6; KONION NP-8; KONION NP-8.5; KONION NP-9; KONION NP-10; KONION NP-12;

KONION NP-14; KONION NP-40F; KONION OP-10; KONION OP-40F; 20427-84-3, 2-[2-(4-nonylphenoxy)ethoxy]ethanol, 2-(2-(4-Nonylphenoxy)ethoxy)ethanol, 

2-[2-(4-Nonylphenoxy)ethoxy]ethanol, 238635_ALDRICH, 238651_ALDRICH, 238678_ALDRICH, 26027-38-3, 9016-45-9, 9062-77-5, 

A 730, A 730 (surfactant), Adekatol NP, Adekatol NP 1000, Adekatol NP 1100, Adekatol NP 638, Adekatol NP 650,Adekatol NP 660, Adekatol NP 675, Adekatol NP 683,Adekatol NP 686, Adekatol NP 690, Adekatol NP 700, Adekatol NP 710, Adekatol NP 720, Adekatol NP 760, Adekatol NP 900, Afilan CVH, Agral, Agral 600, Agral 90, 

Agral LN, Agral Plus, Agral R, Akyporox NP 105, Akyporox NP 95, Alcosist PN, Alfenol, Alfenol 10, Alfenol 18, Alfenol 22, Alfenol 28, Alfenol 710, Alfenol 8, Alfenol N 8, Alkasurf NP, Alkasurf NP 11, Alkasurf NP 15, Alkasurf NP 8, alpha-(Nonylphenyl)-omega-hydroxypoly(oxy-1,2-ethanediyl), alpha-(Nonylphenyl)-omega-hydroxypolyoxyethylene, Antarox 897, Antarox CO, Antarox CO 430, Antarox CO 530, Antarox CO 630, Antarox CO 730, Antarox CO 850, Arkopal N-090, C19H32O3, Carsonon N-9, Caswell No. 605, Chemax NP series, Conco NI-90, DIETHYLENE GLYCOL P-NONYLPHENYL ETHER, Dowfax 9N20, EINECS 243-816-4, Emulgen – 913,

EPA Pesticide Chemical Code 079005, Ethanol, 2-(2-(4-nonylphenoxy)ethoxy)-, Ethanol, 2-[2-(4-nonylphenoxy)ethoxy]-, 

Ethoxylated nonylphenol, Glycols, polyethylene, mono(nonylphenyl) ether, Glycols, polyethylene, monononylphenyl ether, 

Glycols,polyethylene mono(nonylphenyl) ether (nonionic), HSDB 6825, Igepal CO-210, Igepal CO-630, Igepal CO-720,

Igepal CO-890, Lissapol NX, LS-118796, LS-15337, NCGC00164410-01, Neutronyx 600, Nonoxinolum [INN-Latin], Nonoxynol-3, 

Nonoxynol-30, Nonoxynol-4, Nonoxynol-44, Nonyl phenol, ethoxylated, Nonylphenol, polyoxyethylene ether, Nonylphenoxypolyethoxyethanol, 

(Nonylphenoxy)polyethylene oxide, Nonylphenoxypoly(ethyleneoxy)ethanol, branched, Nonyl phenyl polyethylene glycol, 

Nonyl phenyl polyethylene glycol ether, omega-Hydroxy-alpha-(nonylphenyl)poly(oxy-1,2-ethanediyl), PEG-13 Nonyl phenyl ether, 

PEG-15 Nonyl phenyl ether, PEG-30 Nonyl phenyl ether, PEG-3 Nonyl phenyl ether, PEG-44 Nonyl phenyl ether, 

PEG-4 Nonyl phenyl ether, PEG-9 Nonyl phenyl ether, Polyethylene glycol (13) nonyl phenyl ether, 

Polyethylene glycol (15) nonyl phenyl ether, Polyethylene glycol 200 nonyl phenyl ether, Polyethylene glycol (30) nonyl phenyl ether, 

Polyethylene glycol (3) nonyl phenyl ether, Polyethylene glycol (44) nonyl phenyl ether, Polyethylene glycol 450 nonyl phenyl ether, 

POLYETHYLENE GLYCOL NONYLPHENYL ETHER, Poly(oxy-1,2-ethanediyl), alpha-(nonylphenyl)-omega-hydroxy-, 

Polyoxyethylene(10)nonylphenyl ether, Polyoxyethylene(12) nonylphenyl ether, branched, Polyoxyethylene (13) nonyl phenyl ether, 

Polyoxyethylene (15) nonyl phenyl ether, Polyoxyethylene(2) nonylphenyl ether, branched, Polyoxyethylene (30) nonyl phenyl ether, 

Polyoxyethylene(30) nonylphenyl ether, Polyoxyethylene (3) nonyl phenyl ether, Polyoxyethylene(40) nonylphenyl ether, branched, 

Polyoxyethylene (44) nonyl phenyl ether, Polyoxyethylene (4) nonyl phenyl ether, Polyoxyethylene (9) nonyl phenyl ether, 

Polyoxyethylene nonylphenol, Prevocel #12, Protachem 630, Rewopol HV-9, Synperonic NX, Tergetol NP, Tergitol NP-10, 

Tergitol NP-14, Tergitol NP-27, Tergitol NP-33 (nonionic), Tergitol NP-35 (nonionic), Tergitol NP-40 (nonionic), Tergitol NPX, Tergitol TP-9 (nonionic), Triton N-100, Trycol NP-1,; 4-nonylphenol; p-Nonylphenol; 4-n-Nonylphenol; Phenol, 4-nonyl-; 104-40-5; para-Nonylphenol; p-n-Nonylphenol

Phenol, nonyl-; Phenol, p-nonyl-; 4-nonyl phenol; Nonylphenol (mixed); Phenol, nonyl derivs.para Nonyl phenol; p -n -Nonylphenol; CCRIS 1251; HSDB 5359; EINECS 203-199-4; BRN 2047450; CHEBI:34440IGFHQQFPSIBGKE-UHFFFAOYSA-N; MFCD00002396; SBB059316; DSSTox_CID_1857; DSSTox_RID_79098; DSSTox_GSID_33836

68081-86-7; 4-NP; CAS-104-40-5; C9-Alkylated phenol; (C9)Alkylated phenol; UNII-I03GBV4WEL; p-nonyl phenol

Para-nonyl phenol; 4-Nonyl-Phenol; 4-n-Nonyl phenol; EINECS 268-359-8; Spectrum_001973; SpecPlus_000624; AC1Q2VYR Spectrum2_001832; Spectrum3_000872; Spectrum4_000712; Spectrum5_002066; 4-n-Nonylphenol, 85%; 4-n-Nonylphenol, 98% I03GBV4WEL; 1-(4-Hydroxyphenyl)nonane; AC1L1C5R; AC1Q7A7Y; BIDD:PXR0002; SCHEMBL15887; BSPBio_002543

KBioGR_001263; KBioSS_002539; SPECTRUM330085; 3-06-00-02067; KSC180Q2T; BIDD:ER0006; DivK1c_006720

SPBio_001903; CHEMBL153062; DTXSID5033836; CTK0I0829; KBio1_001664; KBio2_002530; KBio2_005098; KBio2_007666

KBio3_002043; MolPort-001-792-012; 4-Nonylphenol, analytical standard; ZINC1850497; Tox21_201241

Tox21_303647; BDBM50410532; CCG-39613; LMPK15010001; LS-375; STL453644; AKOS015888197; MCULE-5930378829

RTR-000982; TRA0078987; NCGC00090918-01; NCGC00090918-02; NCGC00090918-03; NCGC00090918-05; NCGC00090918-06NCGC00090918-07; NCGC00090918-08; NCGC00257420-01; NCGC00258793-01; AN-24676; CC-20192; LP002789;P-NONYLPHENOL (ENDOCRINE DISRUPTER); KB-193654; TL8000182; TR-000982; FT-0619310; ST50827096;C14550; 4-Nonylphenol, PESTANAL(R), analytical standard; C-33468; J-001167; I01-10138; I14-50858 4-Nonylphenol, certified reference material, TraceCERT(R); 4-Nonylphenol (mixture of compounds with branched sidechain); 29832-11-9; polioksi etilen; polioxyetilen; poli oksi etilen; nonilphenol 30; nonylfenol 30; nonilfenol 30; nonilfenol etoksilat; nonilfenoletoksilat; nonilfenol30etoksilat; Np 30; Np-30; NP,30; NP 30; DETERGENT BIOGRAD FL-70 TERGITOL(TM) TMN-6; TERGITOL(TM) TMN-10; TERGITOL TMN-6; TERGITOL TMN; TERGITOL(TM) 15-S-9 TERGITOL(TM) 15-S-7; TERGITOL(TM) 15-S-5;127087-87-0 BioChemical DETERGENT BIOGRAD FL-70 TERGITOL(TM);

TMN-6 TERGITOL(TM) TMN-10; TERGITOL TMN-6; TERGITOL TMN; TERGITOL(TM) 15-S-9; TERGITOL(TM) 15-S-7; TERGITOL(TM) 15-S-5; TERGITOL(TM) 15-S-40;TERGITOL(TM) 15-S-30; TERGITOL(TM) 15-S-3; TERGITOL(R) TMN 6; TERGITOL(R) TMN 3; TERGITOL(R) 15-S-5; TERGITOL(R) TMN 10;TERGITOL TYPE 15-S-9; TERGITOL TYPE 15-S-7; TERGITOL TYPE 15-S-5; TERGITOL TYPE 15-S-30; TERGITOL TYPE 15-S-12;TERGITOL TYPE NP-7; TERGITOL TYPE NP-10; TERGITOL TYPE NP-9; POLYETHYLENE GLYCOL TRIMETHYLNONYL ETHER; Detergents Non-Ionic 2-ethanediyl),alpha-(4-nonylphenyl)-omega-hydroxy-poly(oxy-branched 2-ethanediyl) poly(oxy-alpha-(4-nonylphenyl)-omega-hydroxy-poly(oxy-branched alpha-(4-nonylphenyl)-omega-hydroxypoly(oxy-1,2-ethanediyl)- branched tergitolnp-4surfactant TERGITOL TYPE NP-4; TERGITOL NP-10; NONIONIC TERGITOL NP-7; NONIONIC TERGITOL TYPE NP-40 70% SOLUTION Np-15(Tergitol) Poly(oxy-1,2-ethanediyl),alpha.-(4-nonylphenyl)-.omega.-hydroxy-,branchedNONOXINOL10 ONYLPHENOLETHOXYLATEWITH NOLESOFETHYLENEOXIDE TERGITOLNP-4 polyethylene glycol mono-p-nonylphenyl ether, branched Detergents Detergents A to ZDetergents Non-Ionic Nonylphenol polyethylene glycol ether, Triton(R) C9H19C6H4OCH2CH29OH; Polyethylene glycol mono(branched p-nonylphenyl) ether; 4-Nonylphenol branched ethoxylated; Tergitol Tergitol(R) NP-4, Surfactant Tergitol(R) NP-40, Surfactant Tergitol(R) NP-7, Surfactant Tergitol(R) NP-9, Surfactant Tergitol 4-Nonylphenol branched ethoxylated Tergitol[R]4-Nonylphenol branched ethoxylated -(4-NONYLPHENYL)-OMEGA-HYDROXYPOLY-(OXY-1,2-ETHANEDIYL)-BRANCHED Poly(oxy-1,2-ethanediyl),a-(4-nonylphenyl)-w-hydroxy-, branched; Polyethylene glycol nonylphenyl ether;alpha-(Nonylphenyl)-omega-hydroxypoly(oxy-1,2-ethanediyl); Poly(oxy,1,2-ethanediyl) alpha-(4-nonylphenyl)-omega-hydroxy- branched;4-NONYLPHENOL POLYETHYLENE GLYCOL ETHER BRANCHED; 4-Nonylphenol, branched, ethoxylatedBRANCHED NONYLPHENOL POLYETHYLENE GLYCOL ETHER; Nonylphenol and its ethoxylates Poly(oxy-1,2-ethanediyl), ?-(4-nonylphenyl)-?-hydroxy-branched; Poly(oxy-1,2-ethanediyl), ?-(4-nonylphenyl)-?-hydroxy-, branched Poly(oxy-1,2-ethanediyl), ?-(4-nonylphenyl)-?-hydroxy-, branched; POLY(OXY-1,2-ETHANEDIYL), ?-?-HYDROXY-,BRANCHED?-(4-Nonylphenyl)-?-hydroxypoly(oxy-1,2-ethanediyl), branched; ?-(4-Nonylphenyl)-?-hydroxypoly(oxyethane-1,2-diyl) ramifie;4-Nonylphenol, branched, ethoxylated; Poly(oxy,1,2-ethanediyl) alpha-(4-nonylphenyl)-omega-hydroxy- branched4-Nonylphenol branched ethoxylated; NPE; NP 30; nonilfenol 30; nonilfenol 30 etoksile; Nonylphenol ethoxylate; Cas No : 127087-87-0;nonilfenol 30 EO; Polyoxyethylene Alkylphenyl Ether; arkopal; polyoxyethylene; NP 30; nonylphenol with 30 ethoxylate; Nonylphenol ethoxylate- 30; Polyoxyethylene Alkylphenyl Ether; NP-30; NP30; NP/30; nonilfenol30; nonil fenol 30; nonilfenol etoksilat; polioksietilen alkilfenil eter; polioksietilen; poli oksietilen; poli oksi etilen; polioksi etilen; NP 30, nonilfenol 30, nonilfenol 30 etoksile, Nonylphenol ethoxylate, Cas No : 127087-87-0, nonilfenol 30 EO, , Polyoxyethylene Alkylphenyl Ether, arkopal,polyoxyethylene; NP 30, nonylphenol with 30 ethoxylate, Nonylphenol ethoxylate- 30; Polyoxyethylene Alkylphenyl Ether ;nonifenol; non i fenol; noni fenol; noniphenol; non i phenol; noni phenol; nonylfenol; nony fenol; nonyl fenol; nonylphenol; nonyl Phenol; nonil phenol; nonifenol30 ; non i fenol30; noni fenol30; noniphenol30; non i phenol30; noni phenol30; nonylfenol30; nony fenol30; nonyl fenol30; nonylphenol30; nonyl Phenol30; nonil phenol30; nonifenol-30 ; non i fenol-30; noni fenol-30; noniphenol-30; non i phenol-30; noni phenol-30; nonylfenol-30; nony fenol-30; nonyl fenol-30; nonylphenol-30; nonyl Phenol-30; nonil phenol-30; nonilfenol; non il fenol; nonil fenol; nonilphenol; non il phenol; nonil phenol; nonylfenol; nony fenol; nonyl fenol; Les nonylphénols; nonylphénols Les nonylphenols; nonylphénols;

 

 

Nonylphenol

 

 

Nonylphenol

Nonylphenoles V.svg

Names

IUPAC name

4-(2,4-dimethylheptan-3-yl)phenol

Other names

Phenol, nonyl-

Identifiers

CAS Number

25154-52-3 General class ☑

104-40-5 4-n-Nonyl phenol ☒

84852-15-3 Branched 4-Nonyl phenols ☒

11066-49-2 Isononylphenols ☒

3D model (JSmol)

Interactive image

ChEMBL 

ChEMBL153062 ☒

ChemSpider 

60628 ☑

PubChem CID

67296

InChI[show]

SMILES[show]

Properties

Chemical formula

C15H24O

Molar mass 220.35 g/mol

Appearance Light yellow viscous liquid with phenolic smell [1]

Density 0.953

Melting point -8 to 2 °C (18 to 36 °F; 265 to 275 K)

Boiling point 293 to 297 °C (559 to 567 °F; 566 to 570 K)

Solubility in water

6 mg/L (pH 7)

Hazards

Main hazards low level endrocrine disruptor

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒ verify (what is ☑☒ ?)

Infobox references

Nonylphenols are a family of closely related organic compounds composed of phenol bearing a 9 carbon-tail. Nonylphenols can come in numerous structures, all of which may be considered alkylphenols. They are used in manufacturing antioxidants, lubricating oil additives, laundry and dish detergents, emulsifiers, and solubilizers.[2] These compounds are also precursors to the commercially important non-ionic surfactants alkylphenol ethoxylates and nonylphenol ethoxylates, which are used in detergents, paints, pesticides, personal care products, and plastics. Nonylphenol has attracted attention due to its prevalence in the environment and its potential role as an endocrine disruptor and xenoestrogen, due to its ability to act with estrogen-like activity.[3] The estrogenicity and biodegradation heavily depends on the branching of the nonyl sidechain.[4][5][6] Nonylphenol has been found to act as an agonist of the GPER (GPR30).[7]

 

 

 

Structure and basic properties

Nonylphenols fall into the general chemical category of alkylphenols.[8] The structure of Nonylphenols may vary. The nonyl group can be attached to the phenol ring at various locations, usually the 4- and, to lesser extent, the 2-positions, and can be either branched or linear. A branched nonylphenol, 4-nonylphenol, is the most widely produced and marketed nonylphenol.[9] The mixture of nonylphenol isomers is a pale yellow liquid, although the pure compounds are colorless. The nonylphenols are moderately soluble in water [9] but soluble in alcohol.

 

Nonylphenol arises from the environmental degradation of nonylphenol ethoxylates, which are the metabolites of commercial detergents called alkylphenol ethoxylates. nonylphenols are a clear to light orange color liquid. Nonylphenol ethoxylates are nonionic in water, which means that they have no charge. Because of this property they are used as detergents, cleaners, emulsifiers, and a variety of other applications. They are amphipathic, meaning they have both hydrophilic and hydrophobic properties, which allows them to surround non-polar substances like oil and grease, isolating them from water.[2]

 

Production

Nonylphenol can be produced industrially, naturally, and by the environmental degradation of alkylphenol ethoxylates. Industrially, nonylphenols are produced by the acid-catalyzed alkylation of phenol with a mixture of nonenes. This synthesis leads to a very complex mixture with diverse nonylphenols.[10][11][12] Theoretically there are 211 constitutional isomers and this number rise to 550 isomers if we take the enantiomers into account.[4] To make nonylphenols, manufacturers treat NP with ethylene oxide under basic conditions.[9] Since its discovery in 1940, nonylphenol production has increased exponentially, and between 100 and 500 million pounds of nonylphenol are produced globally every year,[9][13] meeting the definition of High Production Volume Chemicals.

 

Nonylphenols are also produced naturally in the environment. One organism, the velvet worm, produces nonylphenol as a component of its defensive slime. The nonylphenol coats the ejection channel of the slime, stopping it from sticking to the organism when it is secreted. It also prolongs the drying process long enough for the slime to reach its target.[14]

Another surfactant called nonoxynol, which was once used as intravaginal spermicide and condom lubricant, was found to metabolize into free nonylphenol when administered to lab animals.[8]

 

Applications

Nonylphenol is used in manufacturing antioxidants, lubricating oil additives, laundry and dish detergents, emulsifiers, and solubilizers.[2] It can also be used to produce tris(4-nonyl-phenyl) phosphite (TNPP), which is an antioxidant used to protect polymers, such as rubber, Vinyl polymers, polyolefins, and polystyrenics in addition to being a stabilizer in plastic food packaging. Barium and calcium salts of nonylphenol are also used as heat stabilizers for polyvinyl chloride (PVC).[15] Nonylphenol is also often used an intermediate in the manufacture of the non-ionic surfactants nonylphenol ethoxylates, which are used in detergents, paints, pesticides, personal care products, and plastics. Nonylphenol and nonylphenol ethoxylates are only used as components of household detergents outside of Europe.[2] Nonyl Phenol, is used in many epoxy formulations mainly in North America.

 

 

Prevalence in the environment

Nonylphenol persists in aquatic environments and is moderately bioaccumulative. Nonylphenol is not readily biodegradable, and it can take months or longer to degrade in surface waters, soils, and sediments. Nonbiological degradation is negligible.[3] Nonylphenol is partially removed during municipal wastewater treatment due to sorption to suspended solids and biotransformation. [16] [17] Many products that contain nonylphenol have “down-the-drain” applications, such as laundry and dish soap, so the contaminants are frequently introduced into the water supply. In sewage treatment plants, nonylphenol ethoxylate degrades into nonylphenol, which is found in river water and sediments as well as soil and groundwater.[18] Nonylphenol photodegrades in sunlight, but its half-life in sediment is estimated to be more than 60 years. Although the concentration of nonylphenol in the environment is decreasing, it is still found at concentrations of 4.1 μg/L in river waters and 1 mg/kg in sediments.[2]

 

A major concern is that contaminated sewage sludge is frequently recycled onto agricultural land. The degradation of nonylphenol in soil depends on oxygen availability and other components in the soil. Mobility of nonylphenol in soil is low.[2]

Bioaccumulation is significant in water-dwelling organisms and birds, and nonylphenol has been found in internal organs of certain animals at concentrations of 10 to 1,000 times greater than the surrounding environment.[3] Due to this bioaccumulation and persistence of nonylphenol, it has been suggested that nonylphenol could be transported over long distances and have a global reach that stretches far from the site of contamination.[19]

Nonylphenol is not persistent in air, as it is rapidly degraded by hydroxyl radicals.[3]

 

Environmental hazards

Nonylphenol is considered to be an endocrine disruptor due to its ability to mimic estrogen and in turn disrupt the natural balance of hormones in affected organisms.[4][5][6][20][21] The effect is weak because nonylphenols are not very close structural mimics of estradiol, but the levels of nonylphenol can be sufficiently high to compensate.

 

 

Structure of the hormone estradiol and one of the nonylphenols.

The effects of nonylphenol in the environment are most applicable to aquatic species. Nonylphenol can cause endocrine disruption in fish by interacting with estrogen receptors and androgen receptors. Studies report that nonylphenol competitively displaces estrogen from its receptor site in rainbow trout.[22] It has much less affinity for the estrogen receptor than estrogen in trout (5 x 10-5 relative binding affinity compared to estradiol) making it 100,000 times less potent than estradiol.[22][23] Nonylphenol causes the feminization of aquatic organisms, decreases male fertility, and decreases survival in young fish.[2] Studies show that male fish exposed to nonylphenol have lower testicular weight.[22] Nonylphenol can disrupt steroidogenesis in the liver. One function of endogenous estrogen in fish is to stimulate the liver to make vitellogenin, which is a phospholipoprotein.[22] Vitellogenin is released by the maturing female and sequestered by developing oocytes to produce the egg yolk.[22] Males do not normally produce vitellogenin, but when exposed to nonylphenol they produce similar levels of vitellogenin to females.[22] The concentration needed to induce vitellogenin production in fish is 10 ug/L for NP in water.[22] Nonylphenol can also interfere with the level of FSH (follicle-stimulating hormone) being released from the pituitary gland. Concentrations of NP that inhibit reproductive development and function in fish also damages kidneys, decreases body weight, and induces stressed behavior.[24]

 

 

Human health hazards

Alkylphenols like nonylphenol and bisphenol A have estrogenic effects in the body. They are known as xenoestrogens.[25] Estrogenic substances and other endocrine disruptors are compounds that have hormone-like effects in both wildlife and humans. Xenoestrogens usually function by binding to estrogen receptors and acting competitively against natural estrogens. Nonylphenol has been shown to mimic the natural hormone 17β-estradiol, and it competes with the endogeous hormone for binding with the estrogen receptors ERα and ERβ.[2] Nonylphenol was discovered to have hormone-like effects by accident because it contaminated other experiments in laboratories that were studying natural estrogens that were using polystyrene tubes.[8]

 

 

Effects in pregnant women

Subcutaneous injections of nonylphenol in late pregnancy causes the expression of certain placental and uterine proteins, namely CaBP-9k, which suggest it can be transferred through the placenta to the fetus. It has also been shown to have a higher potency on the first trimester placenta than the endogenous estrogen 17β-estradiol. In addition, early prenatal exposure to low doses of nonylphenol cause an increase in apoptosis (programmed cell death) in placental cells. These “low doses” ranged from 10-13-10-9 M, which is lower than what is generally found in the environment.[26]

 

Nonylphenol has also been shown to affect cytokine signaling molecule secretions in the human placenta. In vitro cell cultures of human placenta during the first trimester were treated with nonylphenol, which increase the secretion of cytokines including interferon gamma, interleukin 4, and interleukin 10, and reduced the secretion of tumor necrosis factor alpha. This unbalanced cytokine profile at this part of pregnancy has been documented to result in implantation failure, pregnancy loss, and other complications.[26]

 

Regulation

The production and use of nonylphenol and nonylphenol ethoxylates is prohibited in the European Union due to its effects on health and the environment.[2][44] In Europe, due to environmental concerns, they also have been replaced by more expensive alcohol ethoxylates, which are less problematic for the environment due to their ability to degrade more quickly than nonylphenols. The European Union has also included NP on the list of priority hazardous substances for surface water in the Water Framework Directive. They are now implementing a drastic reduction policy of NP’s in surface waterways. The Environmental quality standard for NP was proposed to be 0.3 ug/l.[2] In 2013 nonylphenols were registered on the REACH candidate list.

 

In the US, the EPA set criteria which recommends that nonylphenol concentration should not exceed 6.6 ug/l in fresh water and 1.7 ug/l in saltwater.[45] In order to do so, the EPA is supporting and encouraging a voluntary phase-out of nonylphenol in industrial laundry detergents. Similarly, the EPA is documenting proposals for a “significant new use” rule, which would require companies to contact the EPA if they decided to add nonylphenol to any new cleaning and detergent products. They also plan to do more risk assessments to ascertain the effects of nonylphenol on human health and the environment. It was suggested that nonylphenol could be added to the list of chemicals on the Toxic Substances Control Act of 1976, but this has yet to occur as of 2014.[3]

In other Asian and South American countries nonylphenol is still widely available in commercial detergents, and there is little regulation.[45]

4-nonylphenol is a member of the class of phenols that is phenol which is para-substituted with a nonyl group. It has a role as an environmental contaminant.

 

ChEBI

Environmental pollutant arising from the degradation of nonionic surfactants in sewage Nonoxynol-9, one of the APEs, is used as a surfactant in cleaning and cosmetic products, and as a spermicide in contraceptives. Nonylphenol is an organic compound of the wider family of alkylphenols. It is a product of industrial synthesis formed during the alkylation process of phenols, particularly in the synthesis of polyethoxylate detergents. Because of their man-made origins, nonylphenols are classified as xenobiotics. In nonylphenols, a hydrocarbon chain of nine carbon atoms is attached to the phenol ring in either the ortho (2), meta (3), or para (4) position, with the most common ring isomers being ortho or para (e. g. figure 1 para-nonylphenol). Moreover, the alkyl chains can exist as either linear n-alkyl chains, or complex branched chains. Nonylphenol is commonly obtained as a mixture of isomers, and is thus usually found as a pale yellow liquid at room temperature with a freezing point of -10°C and a boiling point of 295-320°C. However, pure isomers of nonylphenol crystallize readily at room temperatures and for example, para-n-nonylphenol, forms white crystals at room temperature. Nonylphenol, and a related compound tert-octylphenol, were first detected as an air pollutant in New York City and New Jersey, probably due to its evaporation from the Hudson river and other smaller rivers in the region that routinely receive municipal wastewaters. It is possible that the atmosphere is a destructive sink for nonylphenol as it is probably reactive with atmospheric radicals and/or is photoactive.

 

Human Metabolome Database (HMDB)

 

Nonylphenol is a toxic xenobiotic compound classified as an endocrine disrupter capable of interfering with the hormonal system of numerous organisms. It originates principally from the degradation of nonylphenol ethoxylates which are widely used as industrial surfactants. Nonylphenol ethoxylates reach sewage treatment works in substantial quantities where they biodegrade into several by-products including nonylphenol. Due to its physical-chemical characteristics, such as low solubility and high hydrophobicity, nonylphenol accumulates in environmental compartments that are characterised by high organic content, typically sewage sludge and river sediments, where it persists. The occurrence of nonylphenol in the environment is clearly correlated with anthropogenic activities such as wastewater treatment, landfilling and sewage sludge recycling. Nonylphenol is found often in matrices such as sewage sludge, effluents from sewage treatment works, river water and sediments, soil and groundwater. The impacts of nonylphenol in the environment include feminization of aquatic organisms, decrease in male fertility and the survival of juveniles at concentrations as low as 8.2 μg/l. Due to the harmful effects of the degradation products of nonylphenol ethoxylates in the environment, the use and production of such compounds have been banned in EU countries and strictly monitored in many other countries such as Canada and Japan. Although it has been shown that the concentration of nonylphenol in the environment is decreasing, it is still found at concentrations of 4.1 μg/l in river waters and 1 mg/kg in sediments. Nonylphenol has been referred to in the list of priority substances in the Water Frame Directive and in the 3rd draft Working Document on Sludge of the EU. Consequently there is currently a concern within some industries about the possibility of future regulations that may impose the removal of trace contaminants from contaminated effluents. The significance of upgrading sewage treatment works with advanced treatment technologies for removal of trace contaminants is discussed.

Nonylphenol

Nonylphenol (NP) is a subset of the alkylphenol, and is used as an intermediate in the production of non-ionic surfactants of nonylphenol ethoxylate.

Nonylphenol

Shinichi Miyagawa, … Taisen Iguchi, in Handbook of Hormones, 2016

 

 

Environment

In the environment, NP originates from degradation of nonylphenol ethoxylates, and the principal source is treated wastewater effluent [3,4]. Sumpter and Jobling suggested that NP contained in effluent from sewage treatment works is associated with vitellogenesis in male rainbow trout [5]. NP has greater binding affinity for fish ER than for human ER, and induces the formation of testis-ova (oocytes in the testis) of Japanese medaka at environmentally relevant concentrations [6]. In vitro reporter gene assay revealed that relative potency of NP to estradiol-17β for medaka estrogen receptor α is 0.5% [7]. In in vivo experiments, nonylphenol was found to induce vitellogenins (female egg yolk proteins) in the male liver at 20.3 μg/l in rainbow trout, and at 11.6 μg/l in medaka [8,9].

 

 

Q1. What are nonylphenols?

nonylphenols, also known as nonylphenols and nonylphenol ethoxylates, are nonionic surfactants, or detergent-like substances, with uses that lead to widespread release into aquatic environments. nonylphenols are highly toxic to aquatic life. Note: EPA’s September 2014 proposed Significant New Use Rule covers only nonylphenols that are no longer being used in manufacturing or in products; the SNUR would give EPA the opportunity to review new or resumed use of these 15 nonylphenols.

 

 

Q2. How are nonylphenols used?

NPs/nonylphenols, which are produced in large volumes, are used for industrial processes and in consumer laundry detergents, personal hygiene, automotive, latex paints, and lawn care products.

 

 

Q3. What action is EPA taking?

EPA is proposing a Significant New Use Rule, also known as a SNUR, under the Toxic Substances Control Act (TSCA). The rule would require manufacturers to provide at least 90 days notice to EPA before commencing or resuming any significant new use of the 15 nonylphenols that are no longer used in commerce. This would give EPA the opportunity to evaluate the intended use and, if warranted, take action to prohibit or limit the activity before it occurs.

 

 

Q4. Why is EPA proposing a SNUR for nonylphenols?

nonylphenols chemicals are highly toxic to aquatic life and have a wide variety of industrial and consumer uses that could lead to environmental releases. This action is part of EPA’s work to ensure chemical safety in order to protect human health and the environment.

 

 

Q5. How many chemicals are in the proposed SNUR?

There are 15 nonylphenols chemicals in this proposed SNUR; four nonylphenolss and 11 nonylphenols.

 

 

Q6. What are the potential risks to people?

nonylphenols has been detected in human breast milk, blood, and urine and is associated with reproductive and developmental effects in rodents.

 

 

Q7. Is there an easy way for consumers to avoid using products with nonylphenols?

Consumers can avoid products with nonylphenols by looking for products with EPA’s Safer Choice Label on the shelves of major retailers. When you see the safer product label on a product it means that EPA scientists have evaluated every ingredient in the product to ensure it meets stringent human health and environmental criteria. Learn more about consumer products that carry the safer product label at:http://www2.epa.gov/saferchoice/learn-about-safer-choice-label.

 

 

Q8. Are there alternatives to nonylphenols?

As part of its Safer Product Labeling Program, Design for the Environment has evaluated hundreds of surfactants. Design for the Environment has posted almost 200 non-nonylphenols safer surfactants on its Safer Chemical Ingredient List (SCIL) available at http://www2.epa.gov/saferchoice/safer-ingredients.

 

 

Q9. What other action is EPA taking to evaluate the potential risks of nonylphenols?

In 2010, under EPA’s Design for the Environment Safer Detergents Stewardship Initiative (SDSI), the Textile Rental Services Association of America and its members achieved a 50 percent phase out of nonylphenols from the industrial laundry detergents market. In May 2012, a Design for the Environment Program Alternatives Assessment identified eight classes of surfactants that are safer alternatives to nonylphenols in a broad range of uses.

 

ABSTRACT Nonylphenol is a toxic xenobiotic compound resulted from biodegradation of nonylphenol ethoxlates and alkyl phenol ethoxylates, and Nonylphenol is considered to be an endocrine disrupter capable of interfering with the hormonal system of numerous organisms. Because of Nonylphenols toxic nature, Nonylphenol is on the ‘priority list’ of EPA and the European Water Framework Directive. Ever since nonylphenol was first synthesized, Nonylphenols use and production have been increasing almost exponentially. NNonylphenol has been used as wide range number of fields (textile, leather, paper, cleaning and cosmetics etc.). The annual production of nonylphenol reached to 73,500 tons in Europe, 40,000 tons in Japan and 145,000 tons in USA. The major source of nonylphenol in the environment is the discharge of effluents from sewage treatment plants. Low concentrations of NP can cause damage in the skeletal system, and high concerations can inhibit the growth of embryos. In Europe and the World in 2020, Nonylphenol will be planned that NPEO and APE will enter to the list of the priority chemicals, and also researches are conducted aiming to prevent the introduction of these harmful chemicals into the water environment.Nonylphenols accumulate in the sediments and biological sewage sludges because of their amphiphilic natures. Nonylphenol is determenied that NPs could be removed by several treatment methods such as aerobic, anaerobic, UV, ozonation, activated carbon and aerobic composting. However, these methods are expensive and cause to increase CO2 emission. Therefore, in order to remove nonylphenols which are of great importance in terms of environment and human health, Nonylphenol should be considered to new treatment methods for these type of trace contaminants.

NPEs (nonylphenol ethoxylates) break down in the environment into nonylphenol (NP), one of the most notorious examples of persistent, bioaccumulative and toxic chemicals (PBTs). Widely recognized for extreme aquatic toxicity to fish and wildlife, nonylphenol ethoxylates and nonylphenol may also threaten the health of the developing fetus and young children. Despite being phased out of laundry detergents, widespread use in other consumer products routinely releases NPEs into our homes and the environment.

Potential health effects include:

 

Hormone (endocrine) disruption

Extreme aquatic toxicity

Skin and eye irritation

Reproductive harm

Birth defects

Persistent and bioaccumulative

Commonly used in:

 

 

Household paints, colorants and wood finishes

Clothing and textiles

Paint and stain removers

Surface and drain cleaners

Indoor pesticides

Food packaging (contains related chemicals)

Footwear, toys and games (contains 4-nonylphenol)

Consumer tips:

 

nonylphenol s are rarely listed as an ingredient on a product label. Since nonylphenol s are widely used in large amounts in virtually all household paints, you should ask paint manufacturers to reformulate with safer alternatives.

Wash new clothes before you wear them to reduce exposure to nonylphenol s in your home. (nonylphenols still need to be phased out of textile processing to protect the environment).

Reduce reliance on toys and games that use synthetic rubber, plastics and foams. Search the State of Washington database for specific children’s products that contain nonylphenol .

Urge Gap Inc. and other members of the footwear and apparel industry coalition to achieve their goal of zero discharge of hazardous chemicals, including NPEs, by 2020.

Don’t use pesticides inside your home. Avoid buying food packaged in plastics whenever practicable.

* Under our weak federal laws, it’s impossible for us to know all the uses of nonylphenol in consumer products. As a result, this is not an exhaustive list of all products containing nonylphenol s.

 

Overview of NP 30;

 

Nonylphenol (NP) and Nonylphenol Ethoxylates (NPE) are the most widely used members of the larger alkylphenol and alkylphenol ethoxylate family of non-ionic surfactants. They are produced in large volumes, with uses that lead to widespread release to the aquatic environment.

 

Nonylphenol is persistent in the aquatic environment, moderately bioaccumulative, and extremely toxic to aquatic organisms. NP’s main use is in the manufacture of NPEs. NPEs are used in a wide variety of industrial applications and consumer products. NPEs, though less toxic than NP, are also highly toxic to aquatic organisms, and in the environment degrade to more environmentally persistent NP. NP has also been detected in human breast milk, blood, and urine and is associated with reproductive and developmental effects in fish.

 

 

Nonylphenols were once commonly used in household laundry detergents. EPA and the detergent manufacturers have cooperated to eliminate this use. However, NPEs are still widely used in large quantities in industrial laundry detergents and have some additional uses that lead to releases to water.s

 

 

Nonilfenol

Nonilfenoller (NP); nonilfenol etoksilatlar (NPEO) ve alkil fenol etoksilatlarn (APE) biyodegradasyonlarndan kaynaklanan endokrin bozucu toksik ksenobiyotik bileiklerdir. Bu bileikler, toksik özellikleri nedeniyle EPA ve Avrupa Su Çerçeve Direktifi çalmalarnda ‘öncelikli maddeler’ listesinde yer almaktadr. Nonilfenollerin üretilmeye baland yldan itibaren üretimi ve kullanm katlanarak artm ve tekstil, deri, kat, temizlik ve kozmetik vs. gibi çeitli endüstrilerde kullanlan nonilfenol’lerin yllk üretimi Avrupa’da 73,500; Japonya’da 40,000 ve Amerika’da 145,000 tona ulamtr. Bu sebeple, yeralt ve yüzey sularnda, atmosferde, kanalizasyon çamuru eklenen topraklarda ve besinlerde nonilfenol varlna yaygn olarak rastlanmtr. Çevredeki nonilfenol’nin asl kayna atksu artma tesislerinin dearjlardr. nonilfenol’ler düük konsantrasyonlarda dahi olsa canllarda iskelet sisteminde hasara neden olurken, yüksek konsantrasyonlarda embriyolarn geliimini inhibe edebilmekte, endokrin bozucu özellii ile cinsel davran ve üreme sistemini etkileyebilmekte ve hatta bitkilerde kök, kloroplast ve endoplazmik retikulumun yapsn deitirebilmektedir. Avrupa ve Dünya’da 2020’de nonilfenol ve APE’lerin öncelikli kimyasallar listesine alnmas ve bu tarz zararl kimyasallarn su ortamna verilmesinin engellenmesine yönelik çalmalar yürütülmektedir. nonilfenol’ler amfifilik yaplar nedeniyle biyolojik artma çamurlarnda ve/veya alc ortam sedimentlerinde birikmektedirler ve bundan dolay çalmalar genellikle atk çamurlar üzerinde yaplmtr. Aratrmalar sonucunda nonilfenol’lerin aerobik, anaerobik, UV, ozonlama, aktif karbon ve aerobik kompostlama gibi yöntemler ile giderilebildii belirlenmitir ancak bu yöntemler pahal olmak ile beraber CO2 salnmn arttran yöntemlerdir. Bu nedenle, çevre ve insan sal açsndan büyük önem tayan nonilfenollerin giderimini salamak için, artma tesisleri planlanrken bu tip iz kirleticilerin uzaklatrlmasna yönelik alternatif ileri atksu artm yöntemleri üzerinde durulmaldr.

Nonilfenoller (NP), endüstride emülgatörler, deterjanlar, yüzey modifikatörleri, flotasyon/dispersiyon maddeleri (Shan ve ark., 2011) ve antioksidanlarn üretimde kullanlan ksenobiyotik bileiklerdir (USEPA, 1990). nonilfenol’ler, nonilfenol etoksilat üretiminde yaygn olarak (% 65) kullanlmaktadr (USEPA 1990). Son yllarda NPEO’lar için artan talep ve üretim, nonilfenol yaylmnn kademeli olarak çevreye salnmasna yol açmtr (Karci ve ark., 2014). nonilfenol; su, hava, sediment ve toprakta tespit edilebilir deriimlerde bulunabilen bir kirleticidir ve çevredeki konsantrasyonlar ve yarlanma ömrü bulunduklar ortamlara göre farkllk gösterebilmektedir (Zhang ve ark., 1997). nonilfenol, asit ve bazik çözeltilerde olduu kadar UV na maruz kalma koullarnda da kararlla sahip bir bileiktir (Talsness ve ark., 2009). Nonilfenoller, biyoakümülasyon, düük biyoyararlanm özellii, kanserojenik, teratojenik ve mutajenik etkilerinden dolay önem arz eden bileiklerdir (Krupi ve ark., 2014) ve insan sal açsndan diyabet, obezite, kardiyovasküler bozukluklar ve karacier gibi organlarda toksik etkilere neden olabilmektedir (Kazemi ve ark., 2016). nonilfenol, ayn zamanda östrojen eylemlerini taklit ederek östrojen reseptörü ile etkileime girip cinsel davran ve üreme sistemini etkileyebilmektedir (Christiansen ve ark., 1998). nonilfenol ve NPEO’larn ana emisyon kaynaklar, deterjanlarn kullanm, tekstil ürünlerinin ykanmas, deri ve kat sektörleridir (ekil 1). Bu bileikler, endokrin sistemin bozulmasna neden olan toksik özellik göstermelerinden dolay, ekolojik yaam ve halk sal üzerindeki muhtemel etkileri göz önüne alndnda, atksulardan uzaklatrlmalar öncelikli bir konudur. NPEO’larn endüstride ve evlerde günlük kullanmlarndan dolay atksulara bol miktarda geçmesi ve atksulardaki NPEO’larn biyolojik olarak parçalanmas konusundaki çalmalar son yllarda giderek önem kazanmaktadr ve bu çalmalarn sonucundaatksulardaki NPEO’larn hem aerobik hem de anaerobik koullarda uzaklatrlabildii belirlenmitir. Bununla birlikte, bu çalmalarda biyolojik bozunmadan sonra NPEO’larn, toksik ve endokrin bozucu metabolitlere indirgendii belirtilmitir.Nonilfenol’ün ana bileii olan NPEO’lar, bozunum reaksiyonlar ile daha kalc, lipofilik ve toksik olan nonilfenol (NP) ve izomerlerine dönüürler (Ahel ve ark., 1994b).

Nonilfenoller , 9 karbon kuyruu tayan fenolden oluan yakndan ilikili organik bileiklerin bir ailesidir . Nonilfenoller, hepsi alkilfenoller olarak kabul edilebilecek çeitli yaplarda olabilir . Antioksidanlar , yalama ya katklar, çamar ve bulak deterjanlar , emülgatörler ve çözünürletiriciler üretiminde kullanlrlar . [2] Bu bileikler ayrca deterjanlarda , boyalarda, pestisitlerde kullanlan ticari olarak önemli iyonik olmayan yüzey aktif cisimleri alkilfenol etoksilatlar ve nonilfenol etoksilatlarn öncüleridir ., kiisel bakm ürünleri ve plastikler. Nonilfenol, ortamdaki yaygnl ve östrojen benzeri aktivite ile hareket etme kabiliyeti nedeniyle endokrin bozucu ve ksenoöstrojen olarak potansiyel rolü nedeniyle dikkat çekmitir . [3] Östrojenisite ve biyodegradasyon, arlkl olarak nonil yan zincirin dallanmasna baldr. [4] [5] [6] Nonilfenol bir ekilde hareket bulunmutur agonist arasnda GPER (GPR30). [7]

 

içindekiler

1 Yaps ve temel özellikleri

2 Üretim

3 Uygulamalar

4 Çevrede yaygnlk

4.1 Çevresel zararlar

5 nsanlar için salk tehlikeleri

5.1 Gebe kadnlarda etkiler

5.2 Metabolizma üzerindeki etkiler

5.3 Kanser

5.4 nsana maruz kalma ve arza

5.4.1 Pozlama

5.4.2 Arza

6 Analitik

7 Yönetmelik

8 Kaynakça

Yap ve temel özellikler 

Nonilfenoller, alkilfenollerin genel kimyasal kategorisine girer . [8] NP’lerin yaps deiebilir. Nonil grubu fenol halkasna çeitli konumlarda, genellikle 4- ve daha az ölçüde 2-pozisyonunda balanabilir ve dallanm veya dorusal olabilir. Dallanm nonilfenol, 4-nonilfenol, en yaygn olarak üretilen ve pazarlanan nonilfenoldür. [9] saf bileikler renksiz olmasna ramen nonilfenol izomer karm, sar bir sv elde olup. Nonilfenoller suda orta derecede çözünür [9], ancak alkolde çözünür.

 

Nonilfenol , alkilfenol etoksilatlar ad verilen ticari deterjanlarn metabolitleri olan nonilfenol etoksilatlarn çevresel bozulmasndan kaynaklanr . NPE’ler berrak ila açk turuncu renkli bir svdr. Nonilfenol etoksilatlar su içinde iyonik deildir, yani yükleri yoktur. Bu özelliklerinden dolay deterjan , temizleyici, emülsiyonlatrc ve dier çeitli uygulamalar olarak kullanlrlar. Bunlar amfipatik da her ikisine de sahip, yani hidrofilik ve hidrofobik su onlar izole yaa ve ya gibi polar olmayan maddelerin çevreleyen salar özellikleri. [2]

 

Üretim 

Nonilfenol, endüstriyel, doal olarak ve alkilfenol etoksilatlarn çevresel bozunmas ile üretilebilir. Endüstriyel olarak, nonilfenoller asit katalizli üretilir alkilasyon bir fenol içeren bir karm ile nonen . Bu sentez, çeitli nonilfenollerle çok karmak bir karma yol açar. [10] [11] [12] Teorik olarak 211 anayasal izomer vardr ve enantiyomerleri hesaba katarsak bu say 550 izomere yükselir. [4] NPE’ler yapmak için üreticiler NP’yi temel koullar altnda etilen oksit ile tedavi ederler. [9]1940’ta kefinden bu yana, nonilfenol üretimi katlanarak artt ve her yl dünya çapnda 100 ila 500 milyon pound nonilfenol üretiliyor, [9] [13] Yüksek Üretim Hacmi Kimyasallar tanmn karlamaktadr .

 

Nonilfenoller ayrca ortamda doal olarak üretilir. Bir organizma, kadife solucan , savunma balçklarnn bir bileeni olarak nonilfenol üretir. Nonilfenol, sümüün ejeksiyon kanaln kaplar ve salglandnda organizmaya yapmasn durdurur. Ayrca, balçann hedefine ulamas için yeterince uzun kurutma ilemini uzatr. [14]

Bir zamanlar intravajinal spermisit ve prezervatif yalayc olarak kullanlan nonoksinol ad verilen baka bir yüzey aktif maddenin, laboratuvar hayvanlarna uygulandnda serbest nonilfenole dönütüü bulunmutur. [8]

 

Uygulamalar 

Nonilfenol, antioksidanlar , yalama ya katk maddeleri, çamar ve bulak deterjanlar , emülsiyonlatrclar ve çözündürücüler üretiminde kullanlr . [2] Ayrca, bir olduu üretmek tris (4-nonil-fenil) fosfit (TNPP) için kullanlabilir antioksidan korumak için kullanlan polimerler gibi, lastik , vinil polimerler , poliolefinler ve polystyrenics bir olmann yan sra stabilizatör olarak plastik gda ambalajlar. nonilfenol baryum ve kalsiyum tuzlar dapolivinil klorür (PVC) için s stabilizatörleri . [15] Nonilfenol ayrca deterjanlarda , boyalarda, pestisitlerde , kiisel bakm ürünlerinde ve plastiklerde kullanlan noniyonik yüzey aktif cisimlerinin nonilfenol etoksilatlarnn imalatnda bir ara madde de kullanlr . Nonilfenol ve nonilfenol etoksilatlar sadece Avrupa dndaki ev deterjanlarnn bileenleri olarak kullanlr . [2] Nonil Fenol, çounlukla Kuzey Amerika’da birçok epoksi formülasyonunda kullanlr.

 

 

Çevrede yaygnlk 

Nonilfenol su ortamlarnda devam eder ve orta derecede biyoakümülatiftir . Kendiliinden doada kolaylkla çözünmez ve yüzey sularnda, topraklarda ve çökeltilerde parçalanmas aylar veya daha uzun sürebilir. Biyolojik olmayan bozulma önemsizdir. [3] Nonilfenol, asl atklarn emilmesi ve biyotransformasyon nedeniyle belediye atk su artma srasnda ksmen uzaklatrlr. [16] [17] Nonilfenol içeren birçok ürün, çamar ve bulak sabunu gibi “boaltma” uygulamalarna sahiptir, bu nedenle kirleticiler sk ​​sk su kaynana verilir. Kanalizasyon artma tesislerinde, nonilfenol etoksilat, nehir suyu ve çökeltilerin yan sra toprak ve yeralt sularnda bulunan nonilfenole dönüür. [18]Güne nda nonilfenol fotodegrade olur, ancak tortuda yarlanma ömrünün 60 yldan fazla olduu tahmin edilmektedir. Ortamdaki nonilfenol konsantrasyonu azalmakla birlikte, nehir sularnda 4.1 μg / L ve sedimanlarda 1 mg / kg konsantrasyonlarnda hala bulunur. [2]

 

Önemli bir endie, kirlenmi kanalizasyon çamurunun sklkla tarm arazilerine geri dönütürülmesidir. Toprakta nonilfenol bozulmas oksijen mevcudiyetine ve topraktaki dier bileenlere baldr. Toprakta nonilfenol hareketlilii düüktür. [2]

Biyoakümülasyon, suda yaayan organizmalarda ve kularda önemlidir ve nonilfenol, belirli hayvanlarn iç organlarnda çevre ortamndan 10 ila 1,000 kat daha fazla konsantrasyonlarda bulunmutur. [3] nonilfenol bu biyoakümülasyonu ve kalcl nedeniyle nonilfenol uzun mesafelerde tanabilecei ve kontaminasyon bölgesinden uzayan küresel bir eriime sahip olduu ileri sürülmütür. [19]

Hidroksil radikalleri tarafndan hzla bozunduundan nonilfenol havada kalc deildir . [3]

 

Çevresel tehlikeler 

Nonilfenol, östrojeni taklit etme kabiliyeti ve dolaysyla etkilenen organizmalardaki hormonlarn doal dengesini bozmas nedeniyle bir endokrin ykc olarak kabul edilir . [4] [5] [6] [20] [21] Etki zayftr, çünkü nonilfenoller östradiolün yapsal taklitlerine çok yakn deildir , ancak nonilfenol seviyeleri telafi etmek için yeterince yüksek olabilir.

 

 

Estradiol ve nonilfenollerden birinin hormonunun yaps.

nonilfenol ortamdaki etkileri en çok sucul türler için geçerlidir. Nonilfenol, östrojen reseptörleri ve androjen reseptörleri ile etkileerek balklarda endokrin bozulmasna neden olabilir . Çalmalar, nonilfenol östrojeni, gökkua alabalndaki reseptör bölgesinden rekabetçi bir ekilde deitirdiini bildirmektedir. [22] Östrojen reseptörüne alabalktaki östrojenden ( estradiol’e kyasla 5 x 10-5 bal balanma afinitesi) estradiolden 100,000 kat daha az güçlü olmasn salar. [22] [23] Nonilfenol , suda yaayan organizmalarn diilemesine neden olur, erkek fertilitesini azaltr ve genç balklarda hayatta kalmay azaltr. [2] Çalmalar Erkek balk düük testis arla sahip nonilfenol maruz göstermektedir. [22] Nonilfenol karacierde steroidogenezi bozabilir . Balklarda endojen östrojenin bir fonksiyonu, karacieri bir fosfolipoprotein olan vitellogenin yapmas için uyarmaktr . [22] Vitellogenin olgunlaan dii tarafndan salnr ve yumurta sarsn üretmek için oositler gelitirilerek dizilenir . [22] Erkekler normalde vitellogenin üretmezler, fakat nonilfenole maruz kaldklarnda kadnlara benzer seviyelerde vitellogenin üretirler. [22]Balklarda vitellogenin üretimini indüklemek için gereken konsantrasyon, sudaki NP için 10 ug / L’dir. [22] Nonilfenol , hipofiz bezinden salnan FSH ( folikül uyarc hormon ) seviyesine de müdahale edebilir . Balklarda üreme geliimini ve fonksiyonunu engelleyen NP konsantrasyonlar da böbreklere zarar verir , vücut arln azaltr ve stresli davran indükler. [24]

 

 

nsan sal tehlikeleri 

Nonilfenol ve bisfenol A gibi alkilfenollerin vücutta östrojenik etkileri vardr. Ksenoöstrojenler olarak bilinirler . [25] östrojenik maddeler ve dier endokrin bölücülerinin, hormon-benzeri vahi yaam ve insanlarda hem de etkiler sahip bileiklerdir. Ksenoöstrojenler genellikle östrojen reseptörlerine balanarak ve doal östrojenlere kar rekabetçi olarak hareket ederek ilev görürler. nonilfenol doal hormon 17p-estradiolü taklit ettii gösterilmitir ve östrojen reseptörleri ERa ve ERy ile balanma için endogöz hormonla rekabet eder . [2]nonilfenol, yanllkla polistiren tüpleri kullanan doal östrojenleri inceleyen laboratuvarlardaki dier deneyleri kontamine ettii için yanllkla hormon benzeri etkilere sahip olduu kefedildi . [8]

 

 

Gebe kadnlarda etkiler 

Geç gebelikte deri alt nonilfenol enjeksiyonlar , plasentadan fetüse aktarlabileceini düündüren baz plasental ve uterus proteinlerinin, yani CaBP-9k’nin ekspresyonuna neden olur . Ayrca, ilk trimester plasentada endojen östrojen 17p-estradiol’den daha yüksek bir potansiyele sahip olduu gösterilmitir . Ek olarak, düük dozlarda nonilfenole erken prenatal maruz kalma plasenta hücrelerinde apoptozda (programlanm hücre ölümü) bir arta neden olur . Bu “düük dozlar” 10 -13 -10 -9 M arasnda deimekte olup , bu genellikle ortamda bulunandan daha düüktür. [26]

 

nonilfenol ayrca insan plasentasndaki sitokin sinyal molekülü salglarn etkiledii gösterilmitir . lk trimester srasnda insan plasentasnn in vitro hücre kültürleri , interferon gama , interlökin 4 ve interlökin 10 dahil sitokinlerin salglanmasn arttran ve tümör nekroz faktörü alfa salglanmasn azaltan nonilfenol ile tedavi edildi . Gebeliin bu bölümündeki bu dengesiz sitokin profilinin, implantasyon baarszl, gebelik kayb ve dier komplikasyonlarla sonuçland belgelenmitir . [26]

 

Metabolizma üzerindeki etkiler 

nonilfenol, obeziteyi artran kimyasal veya obezojen olarak hareket ettii gösterilmitir , ancak paradoksal olarak anti- obezite özelliklerine sahip olduu gösterilmitir . [27] , düük doz, bu önemli bir geliim dönemlerinde meydana duyarl proses bozabilir için nonilfenol maruz brakldnda büyüyen embriyolar ve yenidoan özellikle savunmaszdrlar. [28] Nonilfenole prenatal ve perinatal maruziyet, ya dokusunda ve dolaysyla metabolik hormon sentezi ve salmnda geliimsel anormalliklerle ilikilendirilmitir (Merrill 2011). Özellikle, bir östrojen mimik olarak hareket ederek, nonilfenol genel olarak hipotalamik itah kontrolüne müdahale ettii gösterilmitir . [27]hipotalamus , yemekten sonra dolgunluk hissi veren leptin hormonuna yant verir ve nonilfenol, orta beyindeki leptin sinyallemesine müdahale ederek yeme davrann hem arttrd hem de azaltt gösterilmitir . [27] nonilfenol, leptinin, yeme davrann azaltarak anti-obezite etkisi olan nöropeptit Y ve anorektik POMC nöronlar üzerindeki etkisini taklit ettii gösterilmitir . Bu, ventroedial hipotalamusa östrojen veya östrojen taklitleri enjekte edildiinde görülmütür. [29]Öte yandan nonilfenol, beyindeki bu anoreksijenik nöronlarn ekspresyonunu azaltarak gda almn arttrd ve obeziteyi arttrc özelliklere sahip olduu gösterilmitir. [30] Ayrca, nonilfenol ekspresyonunu etkilemektedir ghrelin : bir enzim uyarr itah bu mide tarafndan üretilen. [31] grelin ifadesi pozitif mide östrojen sinyal ile düzenlenir, ve bu da farkllamasn yönlendirilmesinde önemli olan kök hücrelerin içine adipositler (ya hücreleri) içerir. Bu nedenle, östrojen mimik, prenatal ve perinatal olmayan nonilfenole maruz kalmann itah arttrd ve vücudu daha sonra yaamda ya depolamaya tevik ettii gösterilmitir. [32]Son olarak, nonilfenole uzun süre maruz kalmann yetikin erkek sçanlarn karacierindeki insülin sinyalini etkiledii gösterilmitir. [33]

 

 

Kanser 

Nonilfenol maruziyeti de meme kanseri ile ilikilendirilmitir . [2] Östrojene baml ve östrojenden bamsz meme kanseri hücrelerinde ERα (östrojen reseptörü α) üzerindeki agonistik aktivitesi nedeniyle meme kanseri hücrelerinin proliferasyonunu tevik ettii gösterilmitir . Bazlar nonilfenol yaygn insan maruziyeti ile birletiinde önerilen östrojenik etkinin hormona bal meme kanseri hastaln potansiyel olarak etkileyebileceini iddia ediyor . [34]

 

 

nsann maruz kalmas ve dökümü 

Pozlama 

Diyet, nonilfenol insanlara maruz kalmasnn en önemli kayna gibi görünmektedir. Örnein, gda numuneleri Almanya’da bir diyet aratrmasnda 0.1 ila 19.4 ug / kg arasnda deien konsantrasyonlarda bulundu ve bir yetikin için günlük alm miktar 7.5 ug / gün olarak hesapland. [35] Bir baka çalmada, daha fazla maruz kalan bebek grubu için günlük vücut arlna göre 0.23-0.65 ug / kg aralnda bir günlük alm hesaplanmtr. [36] de Tayvan , gda nonilfenol konsantrasyonu 5,8 ila 235.8 ug / kg arasnda deimektedir. Özellikle deniz ürünlerinin yüksek konsantrasyonda nonilfenol olduu bulunmutur. [37]

 

talyan kadnlarda yaplan bir çalma, nonilfenol, oktilfenol, nonilfenol monoetoksilat ve iki oktilfenol etoksilat gibi dier alkil fenollerle karlatrldnda anne sütündeki 32 ng / mL’lik bir konsantrasyonda en yüksek kontaminantlardan biri olduunu gösterdi . Çalma ayrca anne sütündeki balk tüketimi ile nonilfenol konsantrasyonu arasnda pozitif bir korelasyon bulmutur. [37] anne sütü hormonlar çok etkili olan geliiminin erken aamalarnda bulunan yeni doan için besin ana kaynadr, çünkü bu büyük bir sorundur. Anne sütündeki yüksek seviyedeki endokrin ykclar nörolojik geliim , büyüme ve hafza fonksiyonu üzerinde olumsuz etkilerle ilikilendirilmitir .

çme suyu, gda ambalaj malzemeleri, temizlik ürünleri ve çeitli cilt bakm ürünleri gibi dier kaynaklara kyasla önemli bir maruz kalma kayna deildir. Artlm içme suyunda nonilfenol konsantrasyonlar spanya’da 85 ng / L ile Almanya’da 15 ng / L arasnda deimektedir. [2]

Di dolgu macunlar olan hastalarn tükürüklerinde mikrogram miktarlarnda nonilfenol de bulunmutur . [34]

 

Arza 

nsanlar oral olarak nonilfenol aldnda, gastrointestinal sistemde hzla emilir . Bozunmasnda rol oynayan metabolik yollarn glukuronid ve sülfat konjugasyonunu içerdii düünülür ve metabolitler daha sonra ya içinde konsantre edilir. nsanlarda biyoakümülasyon ile ilgili tutarsz veriler vardr, ancak nonilfenol suda yaayan hayvanlarda ve kularda biyolojik olarak biriktii gösterilmitir. nonilfenol atlr dk ve idrar . [3]

 

 

Analytics 

Nonilfenoller gda, içme suyu ve insan doku örnekleri gibi çevre ile ilgili farkl matrislerde her yerde bulunabildikleri için bunlarn saptanmas için birçok olas analitik yöntem vardr. En yaygn yöntemler GC-MS ile analizdir. Ayrca bir GCxGC-ToF-MS ile özel iki boyutlu uygulama olarak. [38] Bununla birlikte, nonilfenoller da HPLC teknikleri ile ayrlr. [39]

 

Nonil yan zincirinin dallanmas, GC-MS veya GC-FID sistemlerinde sentezlenen ve analiz edilen deien östrojen potansiyeli nedeniyle farkl nonilfenoller nedeniyle önemli bir rol oynar. [40] [41] [42] [43] Bu çalmalarda, biyolojik sistemler genellikle enantiyoselektif olduu için, kapsam ayn zamanda farkl nonilfenollerin enantiyoselektif ayrlmas üzerineydi.

 

Yönetmelik 

Avrupa Birlii’nde salk ve çevre üzerindeki etkileri nedeniyle nonilfenol ve nonilfenol etoksilatlarn üretimi ve kullanm yasaktr . [2] [44] Avrupa’da, çevresel kayglar nedeniyle, bunlarn yerini nonilfenollerden daha hzl ayrma kabiliyetleri nedeniyle çevre için daha az sorunlu olan daha pahal alkol etoksilatlar almtr . Avrupa Birlii ayrca yüzey suyu öncelikli tehlikeli maddeler listesinde NP yer verdi Su Çerçeve Direktifi . u anda yüzey su yollarnda NP’lerin iddetli bir azaltma politikas uyguluyorlar. NP için çevresel kalite standardnn 0.3 ug / l olduu ileri sürülmütür. [2]2013 ylnda nonilfenoller REACH aday listesine kaydedildi.

 

ABD’de EPA , nonilfenol konsantrasyonunun tatl suda 6.6 ug / l’yi ve tuzlu suda 1.7 ug / l’yi amamasn öneren kriterler belirlemitir. [45] Bunu yapmak için, EPA endüstriyel çamar deterjanlarnda nonilfenol istem d olarak kaldrlmasn desteklemekte ve tevik etmektedir. Benzer ekilde, EPA, irketlerin yeni temizlik ve deterjan ürünlerine nonilfenol eklemeye karar vermeleri durumunda EPA ile iletiim kurmalarn gerektiren “önemli yeni kullanm” kural önerilerini belgelemektedir. Ayrca nonilfenol insan sal ve çevre üzerindeki etkilerini belirlemek için daha fazla risk deerlendirmesi yapmay planlyorlar. 1976 Zehirli Maddeler Kontrol Yasas’ndaki kimyasallar listesine nonilfenol ilave edilebilecei öne sürüldü , ancak bu henüz 2014 itibariyle gerçeklemedi.[3]

Dier Asya ve Güney Amerika ülkelerinde nonilfenol, ticari deterjanlarda hala yaygn olarak bulunmaktadr ve çok az düzenleme vardr. [45]

Sradaki zararl kimyasal, “kadnlatran kimyasal” olarak da bilinen [madde tag=”N” title=”nonilfenol etoksilat”] (NFE).

Nonilfenol, tpk [madde tag=”S” title=”SLS”] ve [madde tag=”S” title=”SLES”] gibi, çamar deterjanlarnda kullanlan ucuz bir [madde tag=”S” title=”sürfaktan”]. Ancak vücudumuzda SLS ve SLES’den biraz farkl bir etki gösteriyor: Vücudumuz, bu kimyasalla, bir kadnlk hormonu olan östrojeni birbirinden ayrt edemiyor. Dolaysyla endokrin sistemini bozucu bir etkisi var.

Laboratuvar ortamnda östrojen hormonu uygulanan canllarda böbrek ve karacier bozukluklar, testis küçülmesi ve sperm saysnda düü, büyüme ve metabolizma bozukluklar ve artan ölüm oranlar gözlemlenmi. Alabalklarla yaplan bir deneydeyse, östrojen alan erkek alabalklarn dii gibi davrand gözlemlenmi.

Çamar deterjanlarnda NFE kullanm, Kanada ve Avrupa’da kstlanm durumda. ABD’nin en büyük süpermarket zinciri WalMart bile, üreticilerinden Nonilfenol içermeyen ürünler salamalarn talep ediyor. Ne var ki, Nonilfenol’nin evsel deterjanlarda kullanmn durdurmak yetmiyor.Nonilfenol, her eyden önce tekstil sanayiinde kullanlyor. Pek çok dünyaca ünlü markann Çin, Hindistan, Sri Lanka, Vietnam, Filipinler gibi ülkelerde ürettirdii giysiler, Nonilfenol’ye bulanm vaziyette maazalardaki yerlerini alyor.

 

Nonilfenol etoksilatlar bozuldukça, zehirli ve kolay çözünmeyen bir madde olan [madde tag=”N” title=”nonilfenol”] aça çkyor.

Nonil fenol mu bisfenol mu?

5 Mart 2019

PAYLA

 

 

Flip

 

 

Yorum yazA

Kimi besinlerle, kimi soluduumuz hava, kullandmz temizlik (!) ürünleri kimi de giydiimiz giysilerle bedenimize giriyor. Nonil fenol ve bisfenol gibi “fenolik” bileenler de bunlara dahil.

 

 

Son 50 ylda doksan binden fazla yeni kimyasal üretilip hayatmza eklenmi.

Kimi besinlerle, kimi soluduumuz hava, kullandmz temizlik (!) ürünleri (ampuanlar, sv sabunlar, deterjanlar, kremler, serumlar) kimi de giydiimiz giysilerle bedenimize giriyor. Nonil fenol ve bisfenol gibi “fenolik” bileenler de bunlara dahil.

kisi de birbirinden zararl bu “genotoksik” maddelerin esas zararl marifetleri ise hormonal yapmz bozmalar.

Erkek ve kz çocuklarda bata obezite ve erken ergenlik gibi pek çok salk sorununun “tetikçisi” olmalar. Ve maalesef zavall karacierlerimiz plastik kaplar, su damacanalar hatta çocuk bezleri ile bedenimize giren bu kimyasallar tanmyor, onlar nasl temizleyeceini, bedenimizden nasl defedeceini bilmiyor.

Çünkü bu yönde evrimlemi deil. Kimyasal toksinlerin evimize, banyomuza, tuvaletimize hatta çocuk bezlerimize kadar girdiini unutmayalm, uyank olalm.

 

Toksik metallerden kurtulmak m istiyorsunuz?

 

Civa, kurun, kadmiyum… Arsenik, bizmut, berilyum… Bunlar bedenimizde biriken, miktarlar giderek artan toksik ar metallerden sadece bazlar.

Özellikle civa intoksikasyonu mühim bir sorun.

Peki çare ne?

Doru yaklam u: Ar metal toksisitesini gösteren bir durum varsa kan ve idrar testleri ile aratrlacak.

Eer böyle bir bulgu varsa da elasyon yapan (yani bu toksinlerden arnmaya destek veren) takviyelerden faydalanmak düünülecek. Peki, neler o takviyeler. te ksa ve güncel bir liste:

◊ N-Asetil Sistein

◊ Alfa Lipoik Asit

◊ Selenyum (selenomethionin)

◊ Magnezyum (magnezyum glisinat)

◊ Zerdeçal

◊ Deve dikeni

◊ Metil kobalamin (B12)

◊ Metil folat

(Folik Asit)

Görünümü : Reksiz effaf Sv

 

Kimyasal Ad : NP-10 , Nonilfenol

Kimyasal Formül : C15H24O

Ambalaj ekli : Varillerde

Tanm ve Kullanm Alanlar :

Nonilfenoller, alkilfenoller olarak adlandrlan, yakndan ilikili organik bileiklerin bir ailesidir. Antioksidanlar, yalama ya katk maddeleri, çamar ve bulak deterjanlar, emülgatörler ve çözündürücüler üretiminde kullanlrlar. Bu bileikler deterjanlar, boyalar, zirai ilaçlar, kiisel bakm ürünleri ve plastiklerde kullanlan alkilfenol etoksilatlar ve nonilfenol etoksilatlar gibi iyonik olmayan yüzey aktif cisimlerinde de mevcuttur. Nonilfenol, çevre içindeki yaygnl ve östrojen benzeri aktivite ile hareket etme kabiliyeti nedeniyle bir endokrin bozucu ve xenoestrojen olarak potansiyel rolü nedeniyle ilgi çekmitir. Östrojenite ve biyolojik bozunma, nonil yan zincirine bamldr.

Nonilfenoller, alkilfenollerin genel kimyasal kategorisine girer. NP’lerin yaps deiebilir. Nonil grubu, fenol halkasna çeitli konumlarda, genellikle 4- ve daha az ölçüde 2-pozisyonlarna balanabilir ve dallanm veya dorusal olabilir. Dallanm bir nonilfenol, 4-nonilfenol, en yaygn olarak üretilen ve pazarlanan nonilfenoldür. Nonilfenol izomerlerin karm soluk sar bir svdr, ancak saf bileikler renksizdir. Nonilfenoller suda lml olarak çözünür ancak alkolde çözünebilir.

Nonilfenol, alkilfenol etoksilatlar ad verilen ticari deterjanlardaki metabolitler olan nonilfenol etoksilatlarn çevresel bozunumundan kaynaklanmaktadr. NPE’ler açk-açk turuncu renkli bir svdr. Nonilfenol etoksilatlar, suda iyonik deildirler; bu, hiçbir yüke sahip olmadklar anlamna gelir. Bu özellik nedeniyle deterjanlar, temizleyiciler, emülgatörler ve çeitli uygulamalar olarak kullanlrlar. Bunlar amfipatiktir, yani hidrofilik ve hidrofobik özelliklere sahiptir; bu da ya ve gres gibi polar olmayan maddeleri çevreleyerek sudan yaltmalarn salar.

Kullanm Alanlar

 

Nonilfenol, antioksidanlar , yalayc ya katklar, çamar ve bulak deterjanlar , emülsiyon yapclar ve çözündürücüler üretiminde kullanlr .

Ayrca kauçuk, vinil polimerler, poliolefinler ve polistiren gibi polimerleri korumak için kullanlan bir antioksidan olan tris (4-nonil-fenil) fosfit (TNPP) üretmek için kullanlabilir,

Bunun yan sra plastik gda ambalajnda stabilizatör olmaktadr . Nonilfenolün baryum ve kalsiyum tuzlar, polivinil klorür (PVC) için s dengeleyici olarak da kullanlr.

Nonilfenol ayrca deterjan, boya, böcek öldürücü ilaçlar, kiisel bakm ürünleri ve plastiklerde kullanlan non-iyonik yüzeyaktif maddeler nonilfenol eksoksilatlarn üretiminde genellikle bir ara madde olarak kullanlr.

Nonilfenol ve nonilfenol etoksilatlar sadece Avrupa dndaki ev deterjanlar bileenleri olarak kullanlrlar.

 

NPE(Nonilfenol Etoksilatlar), Alkilfenol Etoksilatlar(APE) ad verilmi olan daha büyük bileik grubuna ait genel temizlik maddeleri olarak bilinmaltedir. NPE’ler ve Oktilfenol Etoksilatlar(OPE) gibi çeitli Alkilfenol Etoksilatlar(APE) vardr. OPE’ler ve NPE’ler ayn Kimyasal grubunda bulunmaktadr ve benzer özelliklere sahiptir.

NPE’ler(Nonilfenol Etoksilat) ve Oktilfenol Etoksilatlar’dan(OPE) daha fazla kullanlmaktadr. ndirgenmeleri dier temizlik maddelerinden daha zor olarak bilinmektedir.

Nonilfenol Etoksilatlar(NPE) yüzey gerilimini düürürler ve yüzey üzerinde su ve ya gibi çözelti veya etkileim içerisinde karmayan ara yüzler arasnda konsantre hale getirerek temizleme ilemi yaptklar için yüzey aktif madde olarak bilinmektedir.

Noniyonik yüzey aktif maddeler, sanayi üretiminde yaklak %45 olarak ikinci srada yer almaktadr.

Nonilfenol(NP) ve Nonilfenol Etoksilatlar (NPE) iyonik olmayan yüzey aktif maddelerin, daha büyük alkil fenol ve alkil fenol etoksilatlarn en yaygn kullanlan grubudur. NP ve NPE’ler su ortamlarnda yaygn olarak kullanlmasndan kaynakl olarak youn olarak üretilirler.

NP’lerin ana kullanm alan NPE lerin üretim alandr.

Noniyonik yüzey aktif maddeler, iyonik olmayan sürfaktanlar olarak ta belirtilmektedir. Temizlik kimyasallarnn üretiminde yaygn bir ekilde kullanlmaktadr. Temizlik maddelerinin imalatnda birçok küçük görevlere sahip olmalar, Nonilfenol etoksilatlar bu kimyasallarn üretiminde deerli klmaktadr.

yonik olmayan yüzey aktif maddeler, bu formüllerde kullanlan dier kimyasallarla bir araya getirilmesi durumunda çok iyi geçinmektedirler. Dier bir husus ise, en yüksek seyreltme yaplarak, istenilen özelliin kaybolmamasn salamaktr.

Bilinen en yaygn Etoksilatlar, NP-9 dur. Bunlar Alkil Fenol Etoksilat grubunda yer almaktadr. Ve Etoksilatlar sentetik sabun üretiminde 10 larca yldr yüzey aktif madde olarak kullanlmaktadr.

yonik olmayan etoksillenmi yüzey aktif maddeler yani alkil fenol etoksilatlar, yal alkol etoksilatlar endüstriyel ve tüketici ürünlerinde youn bir ekilde kullanlmaktadr.

Yüzey aktif maddelerin analizinde HPLC yöntemi kullanlmaktadr.

yonik olmayan yüzey aktif maddeler, bunlar genellikle sert sularda çözünmezler. Zayf temizleyiciler olarak düünülen iyonik yüzey aktif cisimler üzerinde tercih edilir.

NP ve NPE’ lerin Fiziksel ve Kimyasal Özellikleri Nelerdir?

Nonilfenol(NP) oda scaklnda orta derecede suda çözünürlüe sahiptir. Nonilfenol(NP) orta derecede buhar basncna sahiptir. Açk sar viskoz bir svdr. Nonilfenol Etoksilatlar(NPE) ler açk turuncu yal svlar ve mumlu haldeki kat materyaller olduklarnda berraktr. Nonilfenol Etoksilatlar(NPE) kimyasal olarak kararl moleküllerdir. Ve reaksiyona girme eilimleri yoktur.

Nonilfenol Etoksilat(NPE) molekülünün bir ucu hidrofilik bir ucu ise hidrofobiktir. Nonilfenol Etoksilatta(NPE) hidrofilik uç su çeker hidrofobik uç ise yalar, gresler ve çözünür molekülleri çeker.

Nonilfenol(NP)’den Nonilfenol Etoksilat(NPE) Üretimi nasldr?

Nonilfenol(NP) ün gerekli artlar altnda Etilen Oksit ile reaksiyona sokulmas neticesinde Nonilfenol Etoksilat(NPE) elde edilir.

Alkalifenol Polietoksilatlarn bozunmas ile olumaktadrlar.

Nonilfenol(NP) ve Nonilfenol Etoksilatlar(NPE)’n kullanm alanlar Nerelerdir?

50 yldan uzun süredir kimya sektöründe yüzey aktif madde olarak kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), tekstil ileme sektöründe, kat hamuru ilemlerinde kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), boyalar, reçineler, ve koruyucu kaplamalar, petrol ve gazlarn geri kazanmnda ve çelik imalatnda kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), böcek ilaçlarnn üretiminde ve elektrik üretim santrallerinde aktif bir ekilde kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), çeitli temizlik ürünlerinin imalatnda kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), Ya temizleme kimyasallar ve deterjan üretiminde de kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), Elyaflarn ovulmas alannda da kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), baz kozmetik ürünlerinin imalatnda kullanlmaktadr.

Nonilfenol(NP)’ nin en önemli kullanm, Nonilfenol Etoksilatlarn(NPE) üretiminde ara ürün olarak kullanlr. Nonilfenol(NP) ayrca kauçuk, vinil ve poliolefinler ve polistiren gibi polimerleri korumak için kullanlan bir antioksidan olan tris(4-nonil-fenil) fosfit (TNPP) oluturmak için reaksiyona sokulurlar. TNPP ayn zamanda gda paketlemesinde stabilizatör olarak kullanlr.

Nonilfenol Etoksilatlar(NPE), slatma ajanlar, emülsifiyer ajan ve datc ajan olarak kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE), tarm sektöründe pestisit olarak kullanlmaktadr.

Nonilfenol Etoksilatlar(NPE) iyi bir emülgatördür.

Nonilfenol Etoksilatlar spermisidlerde kullanlmaktadr.

Nonilfenol Etoksilat Fiyatlarna Etki Eden Faktörler Nelerdir?

Nonilfenol Etoksilat fiyatlar, bu kimyasallarn üretiminde kullanlan hammaddelerin maliyetine bal olarak deimektedir. Burada kullanlan hammaddenin maliyeti arttkça Nonilfenol Etoksilat fiyat da artmaktadr. yonik olmayan yüzey aktif maddeler arasnda en yaygn kullanlan kimyasal olmasndan kaynakl olarak, deterjan üretimini yapan firma saysnn azalmas durumunda Nonilfenol Etoksilat fiyatlar artmaktadr.

Noniyonik Yüzey aktif madde fiyatlar Nonilfenol Etoksilatlarn kullanld alanlara göre deimektedir. Yüksek saflktaki Nonilfenol Etoksilat kullanlacaksa burada Nonilfenol Etoksilat fiyat yüksektir.

NP 30’un Kimyasal Açklamas;

NP, lml su çözünürlüü ve orta derecede buhar basnc ile oda scaklnda soluk sar bir viskoz svdan berraktr. NPE’ler açk turuncu yal svlar veya mumlu kat maddeler için açktr ve kimyasal olarak kararl ve reaksiyona girmeyen olarak kabul edilir. NPE’ler, NP’yi temel koullar altnda etilen oksitle (EO) reaksiyona sokarak üretilir. Etoksilasyon derecesi NP’nin EO’ya molar oranna baldr. NPE’ler, molekülün bir ucunda hidrofilik (“su çeken”) ve kar ucunda hidrofobiktir (“su önleme”). Hidrofilik “kafa” su çeker ve hidrofobik “kuyruk”, yalar ve gresler gibi az çözünen maddeleri çeker.

 

Endüstride alkilfenol etoksilatlar (APEO) noniyonik sürfaktanlar, nonilfenol

Etoksilat (NPEO) ve oktilfenol etoksilat bu grubun balca temsilcileri arasndadr.

Alkilfenol etoksilatlar yaygn olarak kullanlr:

. Ykama ve temizleme maddeleri

. Emülsiyon polimerizasyonu esnasnda emülgatörler

. Dispersiyon ve slatma maddeleri

. Sondaj süreçlerinde adjuvanlar

. Boyama tesislerinde adjuvanlar

. Aartma, eirme, bitirme, yadan arndrma ve köpük giderici kullanlan tekstil yardmc maddeleri

. Böcek ilac formülasyonlar

. yumuatc

 

 

NP 30 Uygulamas;

Nonilfenol etoksilatlar (NPE’ler), 50 yl akn bir süredir ticarette olan yüzeyaktif maddelerdir. NPE içeren ürünler, tekstil ileme, hamur ve kat ileme, boyalar, reçineler ve koruyucu kaplamalar, petrol ve gaz geri kazanm, çelik imalat, haere kontrol ürünleri ve elektrik üretimi dahil pek çok sektörde kullanlmaktadr. Kurumsal ve evde kullanm için çeitli temizlik ürünleri, ya giderme maddeleri ve deterjanlar da mevcuttur. Bu ürünlerin makine üzerindeki mevduatlarn kontrolü, temizleme ekipman ve elyaflarn ovulmas da dahil olmak üzere birçok uygulama bulunmaktadr; Islatma ve çözülme ajanlar olarak; Boyama ve makine keçe temizlik ve iklimlendirme; Ve ürün finisajnda. NPE’ler ayrca kozmetik, temizlik maddeleri ve boyalar da dahil olmak üzere çok çeitli tüketici ürünlerinde kullanlmtr.

NP’nin birincil kullanm NPE’lerin üretiminde ara ürün olarak kullanlr. NP ayrca kauçuk, vinil, poliolefinler ve polistiren gibi polimerleri korumak için kullanlan bir antioksidan olan tris (4-nonil-fenil) fosfit (TNPP) oluturmak üzere reaksiyona sokulabilir. TNPP ayn zamanda plastik gda paketlemesinde stabilizatör olarak kullanlr. Rezidü NP içermesine ramen, TNPP, bu kullanm için Gda ve laç daresi (FDA) tarafndan onaylanmtr. FDA ayrca NP’yi dolayl bir gda temas maddesi olarak listeler. NP’nin baryum ve kalsiyum tuzlar, polivinil klorid (PVC) için s dengeleyici olarak kullanlr. NP ayrca epoksi reçinelerinde katalitik bir seyreltici olarak kullanlr.

 

Islatclar ve stabilizatörler

Emülgatörler ve dispersanlar

Tarmsal Kimyasallar

 

 

NP 30 Önlemleri;

 

 

NP ve NPE’lere insan maruziyetinin esas olarak temizleyiciler, deterjanlar, tarm ve iç pestisitler, kozmetik ürünler, saç boyalar ve kabuklu deniz hayvanlar ve balk gibi suda yaayan gdalardan geldii düünülmektedir.

 

NP 30’un Avantajlar;

 

Yüksek scaklklarda etkilidir

Son derece suda çözünür emülgatör ve stabilizatör

Mükemmel temizlik

Çok Yönlü Çözünürlük Özellikleri

Düük koku

Olaanüstü slanma

 

 

NP 30’un depolanmas;

Bu ürünler için önerilen depolama scakl 10 ila 35 arasnda

 

NP 30’un çözünürlük ve uyumluluu;

 

 

• Suda çözünür

• Klorlu çözücüler ve çou polar çözücü madde içinde çözünebilir

• Seyreltik asitler, bazlar ve tuzlar varlnda kimyasal olarak kararllk

• Sabunlar, anyonik ve dier noniyonik sürfaktanlar ve birçok organik solvent ile uyumludur.

 

 

NP 30’un çözünürlük ve uyumluluu;

 

• Suda çözünür

• Klorlu çözücüler ve çou polar çözücü madde içinde çözünebilir

• Seyreltik asitler, bazlar ve tuzlar varlnda kimyasal olarak kararllk

• Sabunlar, anyonik ve dier noniyonik sürfaktanlar ve birçok organik solvent ile uyumludur.

 

 

 

Nonylphénol

 

un nonylphénol typique, ici le 4-(2,4-diméthylheptan-3-yl)phénol dont les atomes de carbone 3 et 4 sur la chaîne heptyle sont chiraux

Les nonylphénols (C15H24O), ou NP, sont des composé organiques synthétiques (ils ne sont pas produits naturellement) appartenant à la famille des alkylphénols. Le nom de nonylphénol regroupe génériquement différentes formes sous lesquelles on les retrouve ; le 2-, 3- ou 4-nonylphénols. En chimie industrielle, les nonylphénols sont des précurseurs très utilisés des nonylphénols polyéthoxylés (NPE) obtenus par éthoxylation, c’est-à-dire par addition de groupes éthoxyles, -O-CH2-CH2-,(jusqu’à une centaine) largement utilisés dans l’industrie, au moins jusque dans les années 20001 (en 2003 la production mondiale des nonylphénols était estimée aux environs de 600 000 tonnes par an2. Les dérivés éthoxylés des nonylphénols (NPE) font partie du groupe des composés dits alkylphénols éthoxylés (ou APE).

 

 

Les nonylphénols sont théoriquement biodégradables mais toxiques, bioaccumulables et relativement persistants. En effet, ils ne sont totalement dégradés qu’après plusieurs semaines, voir plus selon la température, l’acidité, la luminosité et le milieu dans lequel ils se trouvent ce qui permet la contamination de l’environnement et de certains organismes3. En se dégradant, ces derniers libèrent dans l’environnement le nonylphénol qui a servi à les fabriquer, et les organismes qui les dégradent produisent des métabolites plus toxiques (et œstrogéniques) que les NPE ; dont outre le NP, du nonylphénol monoéthoxylé (NP1EO), du nonylphénol diéthoxylé (NP2EO), de l’acide nonylphénoxyacétique (NP1EC) et de l’acide nonylphénoxyéthoxyacétique (NP2EC).

NP et NPE font partie des produits chimiques fortement suspectés de causer la féminisation de poissons, crustacés, mollusques dans le milieu naturel et des difficultés de reproduction chez ces espèces.

 

 

Sommaire

1 Utilisations, et applications industrielles

2 Toxicité

3 Reprotoxicité

4 Cancérogénicité

5 Dans l’environnement

5.1 Contamination environnementale

5.2 Origine de la contamination environnementale

6 Techniques d’analyses

7 Études

8 Alternatives

8.1 Notes et références

9 Voir aussi

9.1 Articles connexes

9.2 Liens externes

9.3 Bibliographie

Utilisations, et applications industrielles

Les NPE sont synthétisés pour leurs propriétés tensioactives qui permettent une meilleure dispersion des liquides et la miscibilité de certaines substances telles que l’huile et l’eau. Ainsi, ils sont largement utilisés dans l’industrie. L’industrie textile les emploie comme agent mouillant, dispersants, émulsifiants ou encore comme détergents. Ils sont également utilisés dans les peintures, la production de pâtes4 et papiers, le traitement des métaux, l’extraction et la production du pétrole ainsi que dans certains floculants, biocides, agents de rétention, et même produits cosmétiques tels que les shampooings et certains produits nettoyants domestiques5. Ceci indique que les NPE sont présents chez les particuliers en grande quantité.

 

 

Toxicité

Le responsable de l’unité textile à la commission européenne (qui a déjà rédigé la norme REACH concernant les produits autorisés ou non en Europe) mène actuellement une étude sur le nonylphénol qui est soupçonné de provoquer, entre autres, la stérilité chez les personnes qui le manipulent comme chez ceux qui le subissent via utilisation d’eau polluées : Cas de stérilité chez des paysans au Bangladesh (un des plus gros fabricant de textiles au monde, industrie utilisant massivement le nonylphénol, pour nos marques quotidiennes de vêtements) et en Inde où l’industrie textile est présente depuis 30 ans.

 

On retrouve cette substance dans l’eau de lavage des machines à laver, elles ne sont pas filtrées par les usines de traitements de l’eau, les boues restantes après traitement contiennent donc des nonylphénols ; ces boues sont utilisées par certains agriculteurs pour épandage hivernale ; la substance se retrouve ensuite dans les plantes qui poussent dans ces champs. 80 % des légumes poussant en France en contiendrait6.

Les NP et les NPE étant tous les deux présents dans l’environnement, la toxicité des deux familles de composés est prise en compte et est exprimée en équivalent toxique de NP ou ET.

Les NP sont toxiques, notamment pour des organismes aquatiques :

 

pour le poisson (17-1 400 μg/L),

pour les invertébrés (20-3 000 μg/L)

pour les algues (27-2 500 μg/L).

La toxicité des NPE augmente de façon inversement proportionnelle à la longueur de la chaîne éthoxyle. Les NP sont de 2 à 200 fois plus toxique que les NPE4.

 

 

Reprotoxicité

Bien qu’il soit 1 000 à 10 000 fois moins œstrogénique que l’œstradiol, certains nonylphénols pourraient affecter la santé reproductive. Divers modèles biologiques et expérimentations ont montré des atteintes de la fertilité, de la reproduction et du développement chez des organismes exposés au 4-nonylphénol, comme c’est aussi le cas pour d’autres alkylphénols tels que le 4-tert-octylphénol qui a des propriétés proches de celles du 4-nonylphénol.

 

Perturbateurs endocriniens : Les NP sont connus comme ayant une activité œstrogène, c’est-à-dire ayant capacité d’imiter les hormones sexuelles naturelles, qui peut entraîner la féminisation d’organismes aussi différents que des moules7 ou des poissons (démontré par exemple chez Le médaka (Oryzias latipes)8, avec par exemple induction de vitellogénine chez la truite mâle9.

 

Chez l’animal : Ils peuvent provoquer une diminution du succès de reproduction, un ralentissement de la croissance, une diminution de la taille

Chez l’homme : Les effets des NP sur l’Homme sont encore mal connus par manque d’études. Des effets ont été récemment démontrés sur les fonctions du sperme chez les mammifères10 et une détérioration de l’ADN dans le sperme humain et les lymphocytes humains11

Cancérogénicité

Acevedo et son équipe ont montré chez la souris de laboratoire12 que le nonylphénol accroit significativement le risque de cancer mammaire (dans cette étude pour 30 mg·kg-1 de nonylphénol une fois par jour dans la nourriture durant 32 semaines).

 

 

Dans l’environnement

Le nonylphénol (et les nonylphénoléthoxylates) ont été récemment ajoutés à la liste des composés préoccupants pour l’environnement de l’ECHA en 2017, ainsi qu’à celle de l’OSPAR (également en 2017). Et leur utilisation industrielle est déjà restreinte en Europe dans le cas des produits qui auront des contacts directs avec les consommateurs (emballages alimentaires, textiles13).

 

 

Contamination environnementale

Des NP et NPE sont détectés, généralement à faible dose, presque partout (eau, air, sol, sédiments et biote).

 

Le nonylphénol est l’un des produits les plus retrouvés dans les eaux de rivières et fleuves en Europe selon l’AEE )14 L’estimation de l’exposition humaine aux NP et aux NPE reste cependant délicate, du fait des nombreuses sources potentielles d’exposition à ces composés, et en raison d’une mauvaise connaissance de leur cinétique et durée de vie dans l’environnement.

Les données publiées laissent penser que la bioaccumulation du NP et des NPE via la chaîne alimentaire aquatique existe, avec des facteurs de bioconcentration (FBC) et de bioaccumulation (FBA) élevés, pour le biote (dont algues et plantes) ; variant de 0,9 à 3 400 pour les invertébrés et poissons.

Des calculs complets des effets devraient prendre en compte l’action conjointe et éventuellement synergique de toutes les formes et dérivés ou composés de nonylphénols, via l’exposition directe des humains à ces différents composés présents dans de nombreux produits de consommation, mais également via l’exposition indirecte due aux rejets industriels et domestiques, ainsi qu’à des relargages différés (par exemple par remise en suspension de sédiments lors de crues ou curages). Les données de surveillance des milieux auxquels les humains sont le plus susceptibles d’être exposés sont trop limitées pour qu’on puisse estimer avec précision l’exposition humaine ou animale aux NP et aux NPE4.

 

Origine de la contamination environnementale

Les apports de NPE dans l’eau semblent surtout venir des effluents de stations d’épuration des eaux usées (industrielles, municipales) ou de rejets directs faits dans le milieu aquatique. Les particuliers y contribuent via certains shampoings et produits d’entretien rejetés dans les égouts jusqu’aux stations d’épuration (là où elles existent, c’est-à-dire dans les pays riches surtout).

 

Selon le traitement appliqué en station d’épuration, seuls 20 à 80 % des NPE sont éliminés, bien qu’il serait théoriquement possible d’éliminer les NPE jusqu’à 90 %15. Le traitement primaire (simple décantation) ne permet que de supprimer la majeure partie des matières en suspension. Les NPE sont alors attaqués par divers micro-organismes, qui les métabolisent, d’abord en sous-produits. Les produits intermédiaires (nonylphénol) et finaux du métabolisme sont cependant plus persistants que les NPE parents. Il faut plusieurs semaines pour les dégrader notamment par le CO2 et par photodégradation. Ils s’en retrouve donc dans l’environnement notamment dans les sols, les boues d’épandage, les eaux souterraines, les rivières et les sédiments. Les NP sont persistants sous conditions anaérobiques et de froid (dans les eaux souterraines, les sédiments et les décharges) mais semblent l’être beaucoup moins dans le sol en milieu aérobie3.

La présence de NP et de NPE dans les sédiments s’explique aussi par le fait qu’ils sont adsorbés par des particules qui se déposent ensuite au fond des rivières à l’abri de la lumière et parfois de l’oxygène. Leur adsorption dépend notamment de la teneur en carbone organique total des sédiments. Ensuite, les plantes aquatiques, les poissons et divers organismes entrant en contact avec les sédiments ou le sédiment mis en suspension (lors des crues, ou de travaux par exemple ou via des animaux fouisseurs) peuvent absorber les NP et NPE qu’ils renferment.

Les NP sont connus pour s’accumuler dans les tissus des poissons et d’autres organismes vivants, et suivre un processus de « biomagnification » dans la chaîne alimentaire16. Ils se retrouvent donc dans la chaîne alimentaire dans de nombreux produits tels que la charcuterie, les tomates ou encore les pommes.

Un contact direct avec la peau humaine ou avec les muqueuses est également fréquent, ce qui préoccupe les endocronologistes car les NP sont considérés comme des perturbateurs endocriniens, agissant donc à très faibles doses ; Une étude17 commandée par l’ONG Greenpeace que des résidus de NP et de NPE ont été trouvés sur les fibres de des vêtements de 14 grandes marques (dont Adidas, Uniqlo, Calvin Klein, Li Ning, H&M, Abercrombie & Fitch, Lacoste, Converse et Ralph Lauren) achetés dans 18 pays ; 52 vêtements sur les 78 soumis à analyse en contenaient17. La contamination des tissus se fait souvent en Chine, Inde et quelques pays en voie de développement, mais la contamination de l’environnement ou de la peau se fait partout où les habits sont portés18,17.

 

Techniques d’analyses

Les NP peuvent être analysés par plusieurs méthodes ;

 

 

Colorimétrie,

Chromatographie en phase gazeuse-spectrométrie de masse (GC-MS),

Chromatographie en phase liquide à haute performance à détection de fluorescence précédée d’une extraction en phase solide (SPE/HPLC-fluorescence).

Sabik et al.19 ont mesuré la quantité de NP et de NPE dans l’eau du fleuve St-Laurent à la sortie de la station d’épuration de l’île de Montréal à l’aide d’un LC-MS-MS. Les échantillons ont été prélevés en amont et en aval deux fois par jour à trois reprises. L’eau a été filtrée par des pores de 293 mm de diamètre pour enlever les plus grosses particules, puis passée par une cartouche C18[Quoi ?]. Ensuite, 10 μL ont été injectés dans une colonne de chromatographie liquide à température ambiante. La phase mobile était 98 % de méthanol et 2 % d’une solution aqueuse de 1 % d’acide formique. Un tandem MS-MS a été utilisé pour pouvoir mieux séparer les isomères. Ils ont obtenu une concentration de 1,0 ± 0,3 μg/L de NP et de 144 3 μg/L de NPE, en considérant seulement la fraction dissoute dans l’eau.

 

Il est utile de distinguer les isomères des nonylphénols pour déterminer dans quelles proportions ils sont présents dans des mélanges de plusieurs contaminants20. Pour cela, Meinert et al. ont utilisé la technique d’analyse d’effets dirigés. Cette technique implique deux phases d’analyse. Premièrement, il y a la phase de préparation des échantillons par une chromatographie en phase gazeuse préparative GC-FID, où ils ont pu séparer en 11 fractions un mélange de 4-nonylphénol. Selon ce qui a été obtenu, il est fort probable que chaque pic soit un mélange de deux isomères. La résolution pourrait être améliorée, mais les temps de rétention augmenteraient grandement. De ce qui est initialement injecté, 1 % se rend au détecteur, puis 99 % est récupéré afin de passer l’étape 2. Ensuite, chaque fraction est injectée dans un 2e GC, qui est par contre couplé à une spectrographie de masse, qui permet d’évaluer les différentes parties d’embranchements provenant d’un isomère. L’ion moléculaire à 107 m/z est associé à l’ion phénol sans la chaîne carbonée. Plusieurs autres ions moléculaires sont obtenus et correspondent à l’endroit où l’embranchement de la chaîne a lieu. La reproductibilité est très bonne, puisque pour 600 groupes de 11 fractions, les temps de rétention varient de seulement 3 secondes et l’écart-type des pics est inférieur à 9 %.

Des nonylphénols peuvent rapidement et efficacement être détectés avec une machine relativement petite et portative en utilisant un microréacteur où le liquide est transporté à travers des micropores, où des anti-nonylphénols ont été greffés21. Ces pores sont le lieu de réaction où le liquide pénètre. La réaction est la liaison entre l’anti-NP et le NP. Cette réaction est en compétition avec la liaison de l’anti-NP à une peroxidase conjuguée de nonylphénol, NP-HRP. C’est cette enzyme qui permet la mesure, puisqu’elle absorbe à 450 nm. Donc s’il y a présence de NP, l’enzyme ne se lie pas et est éliminée au lavage suivant la réaction. La limite de détection est de 0,1 ng/mL et la sensibilité de 500 ng/mL.

 

Études

En 2004, une étude réalisée en France par Greenpeace portant sur 50 foyers et une école primaire, a permis de mettre en évidence la présence de NP dans certains pyjamas pour enfants, dans des jouets, des produits nettoyants ou encore des peintures22 alors que depuis 2003, ils sont interdits en Allemagne car le centre de recherche de Jülich a trouvé des restes de nonylphénol dans des produits alimentaires tels que le chocolat, les pommes et la charcuterie. Ce centre de recherche a également trouvé des traces de NP dans le lait maternel2. Toujours selon Greenpeace, plus de 25 % des rivières de l’Union Européenne présentent des taux de nonylphénols régulièrement supérieurs à la concentration à effet nul23.

 

Au Canada, les concentrations de NP dans les sédiments du bassin des Grands Lacs et du fleuve Saint-Laurent variaient entre des valeurs inférieures aux niveaux de détection (<0,02 μg/g de poids sec) et 110 μg/g de poids sec. Ces concentrations dépassent la Recommandation Canadienne Provisoire pour la Qualité des Sédiments (RCPQS) qui est de 1,4 mg ET/kg indiquant que des effets nocifs peuvent survenir3.

 

Alternatives

Dans la plupart de leurs usages, les NPE ont été remplacés par des alcools gras éthoxylés. Ces produits de substitutions ne possèdent plus de noyau phénol qui explique la toxicité et de l’écotoxicité des nonylphénols. Ils n’auraient donc plus d’effets perturbateurs endocriniens et ne présenteraient aucun autre inconvénient majeur[réf. nécessaire] .

 

La plupart des industries pour lesquelles le remplacement des NP-NPE a un faible coût ont déjà effectué cette substitution. Ainsi, en 2001, une réduction de près de 100 % de l’utilisation des NP et NPE a été prévue par l’industrie canadienne des pâtes et papiers, pour le 31 décembre 2003 au plus tard. Les usines textiles canadiennes produisant un effluent au-dessus de 30 m3/jour ont pour leur part réduit de 95 % leur utilisation de NP-NPE en 200524.

La substitution serait la plus coûteuse dans le secteur du nettoyage industriel, où des produits de substitution commencent à être utilisés, surtout depuis les années 2000. Selon d’autres sources, le secteur du textile dispose d’alternatives possibles à un coût supportable mais ne semble pas chercher à les adopter25.

 

Le nonylphénol et

ses dérivés éthoxylés

Une réussite dans leur élimination du milieu récepteur

 

 

En raison des risques qu’ils posent pour l’environnement,

le nonylphénol et ses dérivés éthoxylés (NP-NPE) ont été ajoutés

à la liste des substances toxiques de l’annexe 1 de la Loi canadienne

sur la protection de l’environnement (1999) [LCPE, (1999)]. Cet article

décrit brièvement les mesures gouvernementales prises à l’égard

des NP-NPE et leurs effets sur les concentrations de ces

substances dans les cours d’eau au Québec.

ARTICLE

TECHNIQUE

Le nonylphénol et ses dérivés éthoxylés (NP-NPE)

ont été reconnus comme étant des perturbateurs

endocriniens ayant des effets néfastes sur les

écosystèmes aquatiques. Suite à l’ajout des NPNPE à l’annexe 1 de la LCPE (1999), en juin 2001, le

ministre de l’Environnement disposait de 42 mois

pour élaborer et mettre en œuvre des mesures

de prévention ou de contrôle de ces substances.

Au cours de la même période, le ministère du

Développement durable, de l’Environnement,

de la Faune et des Parcs (MDDEFP) a mesuré

les concentrations de NP-NPE dans des cours

d’eau du Québec.

Usages des NP-NPE

Le nonylphénol est exclusivement de source

anthropique. Il s’agit d’un produit chimique

intermédiaire, soit le produit de la réaction

du phénol avec un mélange de nonènes en

présence d’un catalyseur. Il est composé d’un

anneau phénolique attaché à un groupe nonyle

lipophile ramifié ou linéaire. L’ajout à la molécule

d’une chaîne éthoxylée donne les nonylphénols

éthoxylés. Ces substances se présentent sous la

forme de mélanges complexes et sont décrits par

la longueur moyenne de leur chaîne éthoxylée,

se situant entre 1 et 100 groupes éthoxylates

(Servos, 1999). Ces surfactants non ioniques

ont une performance exceptionnelle, d’où leur

grand usage comme détergents, émulsifiants,

agents mouillants, agents dispersants, agents

antistatiques, démulsifiants et solubilisants

(Soares et al., 2008). Leur efficacité à ces titres

les a d’ailleurs rendus fort utiles pour des

usages industriels, commerciaux et domestiques

(Campbell et al., 2000).

Devenir et effets dans l’environnement

On estime que l’utilisation de savons et de

produits de nettoyage était la plus importante

source de rejets de NP-NPE dans l’environnement

canadien avec 56 % des rejets totaux. À 18 %,

le secteur des textiles venait au second rang,

suivi des produits agricoles et pesticides et du

secteur des pâtes et papiers (voir le tableau 1).

Une part importante des nonylphénols éthoxylés

produits et utilisés se retrouve inéluctablement

dans l’eau. En effet, de par leur utilisation comme

détergents, ces produits servent le plus souvent à

mettre en solution dans l’eau des saletés ou des

substances indésirables d’un procédé industriel.

Cette eau, contenant les NPE et les substances

entraînées, se retrouve à l’égout domestique ou

dans l’effluent industriel et est ensuite dirigée

vers une station, municipale ou industrielle,

de traitement des eaux usées. Ces dernières

arrivent à dégrader une part importante des

NPE qui leur sont acheminés, mais il en reste

souvent une certaine quantité qui se retrouve

dans l’effluent final et, ultimement, dans le cours

d’eau récepteur. Le degré de dégradation des

NP-NPE dans les stations d’épuration varie en

fonction de plusieurs facteurs comme le type

de traitement, le temps de résidence des boues

et la température (Maguire, 1999). De l’ensemble

des cas rapportés par Maguire, on constate que

les substances mères à longue chaîne éthoxylée

sont absentes ou constituent généralement une

faible part des NP-NPE rejetés par les stations

d’épuration. On y retrouve plutôt les produits

de dégradation intermédiaires à courte ou

sans chaîne éthoxylée, comme le nonylphénol

diéthoxylate, le nonylphénol monoéthoxylate et

le nonylphénol. Or, ces sous-produits sont plus

persistants dans l’environnement, plus toxiques

et présentent une activité œstrogénique plus

importante que leur substance d’origine (Servos,

1999).

Le MDDEFP a procédé à un suivi des NP-NPE dans

les rivières situées près de sept municipalités où

se trouvaient des usines textiles (Berryman, 2005).

L’échantillonnage a eu lieu mensuellement de

juillet 2002 à juin 2003 pour 17 NPE ( comprenant

1 à 17 groupes éthoxylates) et pour deux de

leurs produits de dégradation carboxylés (NP1EC

Le nonylphénol et

ses dérivés éthoxylés

Une réussite dans leur élimination du milieu récepteur

Vecteur Environnement • Janvier 2013 45

et NP2EC). Les résultats ont montré que les

concentrations de produits nonylphénoliques

dans les échantillons prélevés en aval de ces

municipalités dépassaient les critères de qualité

de l’eau pour la protection de la vie aquatique

(MDDEP, 2009) dans 9 à 45 % des échantillons

selon le site, principalement en hiver. Cela

s’expliquerait par la décomposition moins rapide

et moins complète de ces substances dans les

stations de traitement d’eaux usées durant la

saison hivernale. Les concentrations mesurées

aux stations d’échantillonnage situées en aval des

sept municipalités étaient nettement supérieures

au bruit de fond en amont et confirmaient l’apport

de NPE par les eaux usées des sept municipalités

à l’étude. La concentration maximale mesurée

en amont des municipalités pour la somme

des 19 produits analysés était de 0,7 µg/l alors

qu’en aval des stations d’épuration, les valeurs

médianes variaient entre 1,19 µg/l et 20,8 µg/l

et les concentrations maximales entre 17 µg/l

et 482 µg/l.

 

 

Explore: