ACUMER 2000

Table of Contents

ACUMER 2000

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit)

 

CAS No. : 40623-75-4

EC No. : 609-852-3

 

 

Synonyms:

40623-75-4; Calgon AA-AMPSA; ACUMER 2000; Therma-thin DP; Calgon TRC 233; Calgon TRC 2331; Calgon O 15924J; ACUMER 2000; SCR 100 (surfactant); Acrylic acid AMPS copolymer; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; ACUMER 2000; C10H17NO6S; SCHEMBL1123835; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; ACUMER 2000; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); ACUMER 2000; prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; AKOS032949868; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; A825204; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; ACUMER 2000; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; 2-Akrilamido-2-metilpropan sülfonik asit; 2-acrylamido-2-methylpropanesulfonic acid; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST; ACUMER 2000; 40623-75-4; Calgon AA-AMPSA; Therma-thin DP; Calgon TRC 233; Calgon TRC 2331; ACUMER 2000; Calgon O 15924J; ACUMER 2000; SCR 100 (surfactant); Acrylic acid AMPS copolymer; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; C10H17NO6S; SCHEMBL1123835; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; AKOS032949868; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; ACUMER 2000; A825204; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; 2-Akrilamido-2-metilpropan sülfonik asit; 2-acrylamido-2-methylpropanesulfonic acid; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST; 40623-75-4; Calgon AA-AMPSA; Therma-thin DP; Calgon TRC 233; Calgon TRC 2331; Calgon O 15924J; SCR 100 (surfactant); Acrylic acid AMPS copolymer; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; C10H17NO6S; SCHEMBL1123835; ACUMER 2000; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; ACUMER 2000; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; ACUMER 2000; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; ACUMER 2000; AKOS032949868; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; A825204; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; ACUMER 2000; 2-propenoic acid; ACUMER 2000; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; ACUMER 2000; 2-Akrilamido-2-metilpropan sülfonik asit; 2-acrylamido-2-methylpropanesulfonic acid; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST; ACUMER 2000; 40623-75-4; Calgon AA-AMPSA; Therma-thin DP; Calgon TRC 233; Calgon TRC 2331; ACUMER 2000; Calgon O 15924J; SCR 100 (surfactant); Acrylic acid AMPS copolymer; ACUMER 2000; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; C10H17NO6S; SCHEMBL1123835; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; AKOS032949868; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; A825204; ACUMER 2000; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; 2-Akrilamido-2-metilpropan sülfonik asit; 2-acrylamido-2-methylpropanesulfonic acid; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST; 40623-75-4; Calgon AA-AMPSA; Therma-thin DP; Calgon TRC 233; Calgon TRC 2331; ACUMER 2000; Calgon O 15924J; SCR 100 (surfactant); Acrylic acid AMPS copolymer; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; C10H17NO6S; SCHEMBL1123835; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; ACUMER 2000; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; AKOS032949868; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; A825204; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; ACUMER 2000; 2-Akrilamido-2-metilpropan sülfonik asit; ACUMER 2000; 2-acrylamido-2-methylpropanesulfonic acid; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST; 40623-75-4; ACUMER 2000; Calgon AA-AMPSA; Therma-thin DP; Calgon TRC 233; Calgon TRC 2331; Calgon O 15924J; SCR 100 (surfactant); Acrylic acid AMPS copolymer; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; C10H17NO6S; ACUMER 2000; SCHEMBL1123835; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; AKOS032949868; ACUMER 2000; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; A825204; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); ACUMER 2000; 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); ACUMER 2000; 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; 2-Akrilamido-2-metilpropan sülfonik asit; 2-acrylamido-2-methylpropanesulfonic acid; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST; 40623-75-4; Calgon AA-AMPSA; Therma-thin DP; Calgon TRC 233; Calgon TRC 2331; Calgon O 15924J; SCR 100 (surfactant); Acrylic acid AMPS copolymer; ACUMER 2000; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; C10H17NO6S; SCHEMBL1123835; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); ACUMER 2000; prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; ACUMER 2000; AKOS032949868; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; A825204; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; 2-Akrilamido-2-metilpropan sülfonik asit; 2-acrylamido-2-methylpropanesulfonic acid; ACUMER 2000; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST; 40623-75-4; Calgon AA-AMPSA; Therma-thin DP; Calgon TRC 233; ACUMER 2000; Calgon TRC 2331; Calgon O 15924J; ACUMER 2000; SCR 100 (surfactant); Acrylic acid AMPS copolymer; SCR 100;AA-AMPSA; 2-Acrylamido-2-methylpropanesulfonic acid – acrylic acid copolymer; ACUMER 2000; C10H17NO6S; SCHEMBL1123835; Acrylic acid-acrylamidomethylpropylsulfonic acid copolymer; DTXSID50961031; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; AKOS032949868; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; P534; FT-0715356; A825204; Poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; ACUMER 2000; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Prop-2-enoic acid–N-(2-sulfobutan-2-yl)prop-2-enimidic acid (1/1); 1-Propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; acumer 2000; ACUMER 2000; akumer 2000; AKUMER 2000; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER; 2-Akrilamido-2-metilpropan sülfonik asit; 2-acrylamido-2-methylpropanesulfonic acid; 2-AKRLAMDO-2-METLPROPAN SÜLFONK AST;

 

 

EN

 

 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) IUPAC Name prop-2-enoic acid;2-(prop-2-enoylamino)butane-2-sulfonic acid

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) InChI InChI=1S/C7H13NO4S.C3H4O2/c1-4-6(9)8-7(3,5-2)13(10,11)12;1-2-3(4)5/h4H,1,5H2,2-3H3,(H,8,9)(H,10,11,12);2H,1H2,(H,4,5)

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) InChI Key YVDXQYOOUXSXMU-UHFFFAOYSA-N

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Canonical SMILES CCC(C)(NC(=O)C=C)S(=O)(=O)O.C=CC(=O)O

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Molecular Formula C10H17NO6S

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) CAS 40623-75-4

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) European Community (EC) Number 609-852-3

 

 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Molecular Weight 279.31 g/mol 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Hydrogen Bond Donor Count 3 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Hydrogen Bond Acceptor Count 6 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Rotatable Bond Count 5 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Exact Mass 279.077658 g/mol 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Monoisotopic Mass 279.077658 g/mol 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Topological Polar Surface Area 129 Ų 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Heavy Atom Count 18 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Formal Charge 0 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Complexity 359 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Isotope Atom Count 0 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Defined Atom Stereocenter Count 0 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Undefined Atom Stereocenter Count 1 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Defined Bond Stereocenter Count 0 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Undefined Bond Stereocenter Count 0 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Covalently-Bonded Unit Count 2 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Compound Is Canonicalized Yes

 

 

STABILIZATION/DISPERSANCY PERFORMANCE ACUMER® 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER® 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces.APPLICATIONS Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, antiscalent and dispersant, ACUMER® 2000 is particularly recommended for the majorities of the cooling water treatment programmes :Phosphate based programmes.Zinc based programmes.Advanced all organic programmes in which ACUMER® 2000 helps corrosion inhibitors onto metal surfaces.ACUMER® 2000 has a synergic effect with the other additives in preventing scale as well as corrosion.BENEFITS OF ACUMER® 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH’s. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life.Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system.Keeps surfaces clean for maximum heat transfer and corrosion resistance.CHEMISTRY AND MODE OF ACTION ACUMER® 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms:Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts.Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations.Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas TEST METHOD ACUMER® 2000 may be analyzed at use concentration with the Hach polyacrylate test kit. This kit employs a patented method developed SAFE HANDLING INFORMATION Caution: – Contact may cause eye irritation and slight skin irritation.First aid measures Contact with skin: wash skin thoroughly with soap and water. Remove contaminated clothing and launder before rewearing.Contact with eyes: flush eyes with plenty of water for at least 15 minutes and then call a physician.If swallowed: if victim is conscious, dilute the liquidby giving the victim water to drink and then call aphysician. If the victim is unconscious, call a physician immediately. Never give an unconscious personanything to drink. Toxicity: – Acute oral (LD50) rats: >5g/kg ACUMERTM 2000 is an excellent phosphate and zinc stabilizer and dispersant of inorganic particulates for anti-scale/anticorrosion cooling water treatment formulations.ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms:Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts.Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations.Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas.ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces.Applications Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs:Phosphate based programs Zinc based programs Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces.Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH’s. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life.Exhibits exceptional stability in the presence of hypochlorite.Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system.Keeps surfaces clean for maximum heat transfer and corrosion resistance.ACUMER is a low molecular weight polyacrylate with a selected molecular weight around 2000 to optimize the anti-scale performance through at least three mechanisms: • Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts (calcium carbonate in particular). • Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations. • Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces.ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms:Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts.Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readilyfractured crystals that do not adhere well to surfaces and can be easily removed during cleaningoperations. Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomeratingand depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groupsadsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them fromaggregating into larger particles which can settle and deposit on tube surfaces and low flow areas.ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces.Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs:Phosphate based programs.Zinc based programs.Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces.ACUMER 2000 has a synergic effect with the other additives in preventing scale as well as corrosion.Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range oftemperatures and pH’s. This stability enables the formulator to manufacture one-package treatments athigh pH for maximum shelf life.Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system.Keeps surfaces clean for maximum heat transfer and corrosion resistance.Test Method If a traceable polymer is required, OPTIDOSETM 2000 offers identical performance to ACUMER 2000, with the ability to detect 0.5 ppm – 15 ppm without interferences.IR-2000 Carboxylate-sulfonate Copolymer Dispersant Properties: IR-2000 carboxylate-sulfonate copolymer is the copolymer of acrylic-acrylate-sulfosate, it is a good scale inhibitor for calcium phosphate, calcium carbonate, and other inorganic minerals. IR-2000 carboxylate-sulfonate copolymer dispersant can effectively stabilize calcium phosphate in the formula containing phosphate. It can also stabilize zinc in a formula containing zinc. IR-2000 can disperse inorganic microparticles without pH influence. IR-2000 carboxylate-sulfonate copolymer is an effective dispersant in all organic water treatment formula, it can be used as a dispersant for minerals, a stabilizer for calcium phosphate. (similar to ACUMER 2000) ACUMER 2000 is recommended for use in cooling water treatments. It is an excellent zinc and phosphate stabilizer and dispersant of inorganic particulates for anti-scale/anti-corrosion.Advantages of Acumer 2000 Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Prevents the formation of deposits on heat transfer surfaces Prevents inorganic and sedimentation fouling Inhibits precipitation of calcium, iron salts, and magnesium The dynamic test was performed using the method of Example 7 at 132° F. to stress the system and increase the scaling tendency. The results are shown in FIG. 4; “new polymer” is that of Example 1; the PMA is BELCLENE 200 from BioLab. The AA/AMPS (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) is ACUMER 2000 from Rohm and Haas. One can see that the new polymer was able to keep more calcium in solution up to a higher cycle of concentration, before precipitation began to occur.The dynamic test was performed using the method of Example 7 at 104° F. to demonstrate the ability of the new polymer to stabilize ferrous iron within the system. The multifunctional polymer of Example 1 (“new polymer”) was compared to the BELCLENE 200 PMA homopolymer, the ACUMER 2000 AA/AMPS (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) copolymer, and phosphonate. The results are shown in FIG. 6. One can see that the phosphonate and PMA were not able to stabile any ferrous iron throughout the test. The AA/AMPS (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) copolymer was able to stabilize the ferrous iron up to around 2.4 cycles of concentration, where it failed due to the precipitation of calcium carbonate. The new polymer performed much better, maintaining the ferrous iron concentrations up to nearly 4.0 cycles of concentration.The dynamic test was performed using the method of Example 7 at 110° F. to demonstrate the ability of the new polymer to stabilize ortho-phosphate within the system. The polymer of Example 1 (“new polymer”) was compared to the BELCLENE 200 PMA homopolymer and the ACUMER 2000 AA/AMPS (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) copolymer. The results are shown in FIG. 7. All three systems had a 3.0 mg/L feed of ortho-phosphate introduced at the same time. Notice how the polymer of Example 1 and AA/AMPS (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) treatments were able to achieve and maintain the intended 3.0 mg /L PO4 in solution throughout the test, while the PMA was not. PMA was only able to achieve 1.75 mg/L of ortho-phosphate, which gradually dropped to 1.25 mg/L by the end of the test. The remaining ortho-phosphate was precipitating out as calcium phosphate. A large percentage of this precipitated calcium phosphate deposited as scale on the heat exchangers, which will be shown in the next example.The dynamic test was performed using the method of Example 7 at 110° F. to demonstrate the ability of the new polymer to maintain the cleanliness of the rods. The polymer of Example 1 was compared to the BELCLENE 200 PMA homopolymer and the ACUMER 2000 AA/AMPS (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) copolymer.Acumer 2000 Series (Scale Inhibitor) Deionized water 34% TT50 (Tolyltriazole 50% Actives) 1% Belcene 494 (50% Actives) 10% Dequest 2010 (55% Actives) 5% Acumer 2000 (50% Actives) 5% KOH (45% Actives) 5% Provides pH of 5.0 Acumer 2000® 0.6 – 6.0 deposit control agent sulfonated acrylate copolymer Acumer 2000 2.5 deposit control agent sulfonated acrylate copolymer Acumer
2000 Acumer 2000 Series Polymer Electrolyte Membranes Prepared by Graft Copolymerization of 2-Acrylamido-2-Methylpropane Sulfonic Acid and Acrylic Acid on PVDF and ETFE Activated by Electron Beam Treatment.Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterizationRelationships between the formation mechanism and the swelling behavior of acrylamide (AAm)/2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit)-based hydrogels were studied. The hydrogels were prepared by free-radical crosslinking copolymerization of AAm and AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) at 408C in the presence of N,N0 methylenebis(acrylamide) (BAAm) as the crosslinker. Both the crosslinker ratio (mole ratio of crosslinker to monomer) and the initial monomer concentration were fixed at 1/82 and 0.700 M, respectively, while the AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content in the monomer mixture was varied from 0 to 100 mol%. It was found that the copolymer composition is equal to the monomer feed composition, indicating that the monomer units distribute randomly along the network chains of the hydrogels. The monomer conversion versus time histories as well as the growth rate of the gel during the polymerization were found to be independent of the amount of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) in the initial monomer mixture. It was shown that the reaction system separates into two phases at the gel point and the gel grows in a heterogeneous system. The equilibrium degree of swelling of the final hydrogels increases with increasing AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content until a plateau is reached at about 10 mol% AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit). Between 10 and 30 mol% AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit), the equilibrium gel swelling in water as well as in aqueous NaCl solutions was independent on the ionic group content of the hydrogels. Further increase in the AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content beyond this value increased the gel swelling continuously up to 100 mol%. The polyelectrolyte theories based on the counterion condensation cannot explain the observed swelling behavior of AAm/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hydrogels. The swelling curves of the hydrogels in water and in aqueous NaCl solutions were successfully reproduced with the Flory-Rehner theory of swelling equilibrium including the ideal Donnan equilibria, where the effective charge density was taken as an adjustable parameter.Relationships between the formation mechanism and the swelling behavior of acrylamide (AAm)/2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit)-based hydrogels were studied. The hydrogels were prepared by free-radical crosslinking copolymerization of AAm and AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) at 40°C in the presence of N,N′-methylenebis(acrylamide) (BAAm) as the crosslinker. Both the crosslinker ratio (mole ratio of crosslinker to monomer) and the initial monomer concentration were fixed at 1/82 and 0.700 M, respectively, while the AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content in the monomer mixture was varied from 0 to 100 mol%. It was found that the copolymer composition is equal to the monomer feed composition, indicating that the monomer units distribute randomly along the network chains of the hydrogels. The monomer conversion versus time histories as well as the growth rate of the gel during the polymerization were found to be independent of the amount of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) in the initial monomer mixture. It was shown that the reaction system separates into two phases at the gel point and the gel grows in a heterogeneous system. The equilibrium degree of swelling of the final hydrogels increases with increasing AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content until a plateau is reached at about 10 mol% AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit). Between 10 and 30 mol% AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit), the equilibrium gel swelling in water as well as in aqueous NaCl solutions was independent on the ionic group content of the hydrogels. Further increase in the AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content beyond this value increased the gel swelling continuously up to 100 mol%. The polyelectrolyte theories based on the counterion condensation cannot explain the observed swelling behavior of AAm/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hydrogels. The swelling curves of the hydrogels in water and in aqueous NaCl solutions were successfully reproduced with the Flory-Rehner theory of swelling equilibrium including the ideal Donnan equilibria, where the effective charge density was taken as an adjustable parameter. Scaling rules were derived for the ionic group content and the effective excluded volume of the hydrogels.The scope of aqueous Cu(0)-mediated living radical polymerisation has been expanded with the preparation of poly(2-acrylamido-2-methylpropane sulfonic acid)sodium salt (P(NaAMPS)) and poly(acryloyl phosphatidycholine) (PAPC). Manipulation of the reaction conditions furnishes polymers capable of undergoing chain extension and supporting the synthesis of block copolymers at 0 °C.Relationships between the formation mechanism and the swelling behavior of acrylamide (AAm)/2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit)-based hydrogels were studied. The hydrogels were prepared by free-radical crosslinking copolymerization of AAm and AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) at 40°C in the presence of N,N′-methylenebis(acrylamide) (BAAm) as the crosslinker. Both the crosslinker ratio (mole ratio of crosslinker to monomer) and the initial monomer concentration were fixed at 1/82 and 0.700 M, respectively, while the AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content in the monomer mixture was varied from 0 to 100 mol%. It was found that the copolymer composition is equal to the monomer feed composition, indicating that the monomer units distribute randomly along the network chains of the hydrogels. The monomer conversion versus time histories as well as the growth rate of the gel during the polymerization were found to be independent of the amount of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) in the initial monomer mixture. It was shown that the reaction system separates into two phases at the gel point and the gel grows in a heterogeneous system. The equilibrium degree of swelling of the final hydrogels increases with increasing AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content until a plateau is reached at about 10 mol% AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit). Between 10 and 30 mol% AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit), the equilibrium gel swelling in water as well as in aqueous NaCl solutions was independent on the ionic group content of the hydrogels. Further increase in the AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) content beyond this value increased the gel swelling continuously up to 100 mol%. The polyelectrolyte theories based on the counterion condensation cannot explain the observed swelling behavior of AAm/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hydrogels. The swelling curves of the hydrogels in water and in aqueous NaCl solutions were successfully reproduced with the Flory-Rehner theory of swelling equilibrium including the ideal Donnan equilibria, where the effective charge density was taken as an adjustable parameter. Scaling rules were derived for the ionic group content and the effective excluded volume of the hydrogels.Copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit), monomer 1) with 2-hydropropyl methacrylate (monomer 2) was conducted in pure water at 80°C. The reactivity ratios estimated from the compositional data of the copolymers at low conversion are r1=0.04±0.04 and r2=6.30±0.48, and values of Q1 and e1 are 0.16 and 1.37, respectively. Copolymer microstructure predicted by statistical calculation shows mean sequence length of MI shorter than 2. These results can be attributed to the strong repulsion between the ionized chain radical and charged monomer of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit).AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Monomer (2-Acrylamido-2-Methylpropane sulfonic Acid) Chitosan is considered as one of the best biopolymers for bone tissue engineering application due to its appealing properties such as biocompatible, non-toxic, non-immunogenic, able to accelerate growth rate of bone tissue, possess antibacterial activity and able to form porous structure. Herein, polyelectrolyte complexes (PECs) prepared by simple mixing of chitosan solution and poly-2-acrylamido-2-methylpropane sulfonic acid (PAMPS) solution were investigated. In this study, chitosan concentration were varied from 1.0 to 2.0% (w/v), while concentration of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) was fixed at 0.1% (w/v) to know the influence of chitosan concentration on swelling capacity and mechanical properties of obtained PECs. Swelling test and compressive test results showed that the most stable PECs in aqueous environment with highest ultimate compressive strength was PECs obtained from chitosan 2.0% (w/v) – PAMPS 0.1% (w/v) with swelling capacity 3,326% for 2 hours and ultimate compressive strength 1.22 kPa.Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer is the copolymer of acrylic acid and 2-acrylanmido-2-methylpropanesulfonic acid (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit). Due to including carboxylic group (scale inhibition and dispersion) and sulfonic acid group (strong polarity) in this copolymer, AA/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) has high calcium tolerance and good scale inhibition for calcium phosphate, calcium carbonate and zinc scale. When built with organophosphines, the synergic effect is obvious. Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer is suitable to be used in water quality of high pH and high alkaline, it is one of the ideal scale inhibitor and dispersant on high concentration index.Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer can be used as scale inhibitor and dispersant in open circulating cool water system, oilfield refill water system, metallurgy system and iron & steel plants to prevent sediment of ferric oxide. When built with organophosphorines and zinc salt, the suitable pH value is 7.0~9.5.Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer can also be used as dyeing auxiliaries for textile.AA-AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit); AA-AMPSA; Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer; Sulfonated Polyacrylic Acid Copolymer;The first example of quasiliving radical polymerization and copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) without previous protection of its strong acid groups catalyzed by [Ru(o-C6H4-2-py)(phen)(MeCN)2]PF6 complex is reported. Nuclear magnetic resonance (RMN) and gel permeation chromatography (GPC) confirmed the diblock structure of the sulfonated copolymers. The poly(2-acryloamido-2-methylpropanesulfonic acid)-b-poly(methyl methacrylate) (PAMPS-b-PMMA) and poly(2-acryloamido-2-methylpropanesulfonic acid)-b-poly(2-hydroxyethylmethacrylate) (PAMPS-b-PHEMA) copolymers obtained are highly soluble in organic solvents and present good film-forming ability. The ion exchange capacity (IEC) of the copolymer membranes is reported. PAMPS-b-PHEMA presents the highest IEC value (3.35 mmol H+/g), but previous crosslinking of the membrane was necessary to prevent it from dissolving in aqueous solution. PAMPS-b-PMMA exhibited IEC values in the range of 0.58-1.21 mmol H+/g and it was soluble in methanol and dichloromethane and insoluble in water. These results are well correlated with both the increase in molar composition of PAMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) and the second block included in the copolymer. Thus, the proper combination of PAMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) block copolymer with hydrophilic or hydrophobic monomers will allow fine-tuning of the physical properties of the materials and may lead to many potential applications, such as polyelectrolyte membrane fuel cells or catalytic membranes for biodiesel production.Diethyl ethanolamine (DEEA), acrylic acid (AA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) were purchased from Sigma Aldrich Chemicals Co. 2,2-Azobisisobutyronitrile, AIBN, is radical initiator purified and recrystallized from methanol solution and produced by Merck. The radical copolymerization of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) and AA was carried out at equal monomer ratios in water as solvent as reported in previous work [22].2-Acrylamido-2-methylpropane sulfonic acid (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) was trademarked by Lubrizol Corporation. This reagent can be used to change various chemical properties of anionic polymers of hydrophilic, sulfonic acid acrylic monomer. In the 1970s, the first patent was opened for acrylic fiber production using this monomer. Today, there are several thousand patents and publications involving the use of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) in many fields including water treatment, petroleum field, building chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives and rheology modified. 2-ACRYLAMIDO-2-METHYLPROPANE SULPHONIC ADSORPTION OF ACID-BASED HYDROGELS AND HEAVY METALS Hydrogels exhibit important properties due to their intermediate state between liquid and solid. The ability to absorb and store water and aqueous solutions makes hydrogels the only substance in heavy metal ions removal and recovery applications. In this study, thiourea, guanidine and urea modified 2-acrylamido-2-methylpropane sulfonic acid (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) monomers were synthesized in order to remove Pb (II) and Cd (II) ions from aqueous solutions. Then by radical photopolymerization Poly (Thiourea modified AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) / Acrylic Acid / N-Vinyl-2-Pyrrolidone / 2-Hydroxyethyl Methacrylate) [P (AMPSTU / AAc / NVP / HEMA)] hydrogel, Poly (Guanidine modified AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) / Acrylic Acid / N- Vinyl-2-Pyrrolidone / 2-Hydroxyethyl Methacrylate) [P (AMPSG / AAc / NVP / HEMA)] hydrogel and Poly (Urea modified AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) / Acrylic Acid / N-Vinyl-2-Pyrrolidone / 2-Hydroxyethyl Methacrylate) [P ( AMPSU / AAc / NVP / HEMA) hydrogel was prepared. The structures of the monomers and hydrogels were characterized by Fourier Transform Infrared Spectroscopy, Thermal Gravimetric Analysis, and Scanning Electron Microscopy. The effects of pH, initial metal ion concentration and adsorption equilibrium time on the adsorption capacity of hydrogels on metal ions were investigated. [83]. Hydrogels are smart and soft materials that have the ability to change volume and / or shape with an external effect such as temperature and solvent quality. These properties of hydrogels have attracted considerable attention in recent years. However, hydrogels have low mechanical strength. However, they respond slowly to an external influence. These two disadvantages limit the practical application of hydrogels. The aim of this doctoral thesis is to synthesize hydrogels that both have good mechanical strength and can respond immediately to external stimuli. In this context, two methods have been used to obtain gels with very fast response and high mechanical strength (tough). In the first part of the thesis, the gelation of ionic monomer 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) and crosslinker N, N’-methylenebis (acrylamide) (BAAm) in aqueous solutions using low monomer concentrations and high cross-link amounts reactions have been shown to lead to the formation of microgel-aggregate gels that harden after cysticism.Thus, the free radical crosslinking reactions of AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) and BAAm were carried out at temperatures below the freezing point of the polymerization solvent. Macroporous poly (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) (PAMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hydrogels with different properties, called cryogels, have been synthesized. The cryogelization method provided advantages in two aspects: The cryogels obtained showed a high degree of toughness as well as their super fast response. An important part of this study focuses on the relationship between the formation and properties of cryogels obtained from frozen monomer solutions. In this study, firstly poly (2-acrylamido-2-methylpropane sulphonic acid) (p (AMPS)) type hydrogels were synthesized and then giemsa stain (GS), methylene blue (MB) and rhodamine were investigated. Loaded with 6G (R6G) dyestuffs. Since hydrogels can have many water-loving functional groups in their structures, they have the opportunity to be applied in many fields such as medicine, biomedical, pharmacy, cosmetics, agriculture and environment. GS, MB, R6G dyestuffs are frequently used in applications such as pH adjustment and determination in chemistry, biology and medicine, diagnosis and treatment of diseases, and in industry applications requiring dyes, thanks to their ability to bind to substances such as genes, proteins and DNA. Thanks to their fluorescent properties, they can also be used in various optical applications. Optical properties of synthesized and dye loaded hydrogels were analyzed by ultraviolet-visible region (UV-Vis) absorption spectrophotometer and fluorescence spectrophotometer. As a result of these analyzes, it was determined that the optical properties of these dyes were also observed in dye loaded p (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hydrogels. The electrical properties of p (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hydrogels and dye loaded hydrogels were examined by conductivity measurements at room temperature. Analyzes of electrical and optical properties have shown that dye loaded p (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hydrogels have the potential to be used in medical applications, optoelectronic applications such as LED, solar cell, optical filter. In this study, firstly, poly (2-acrylamido-2-methylpropane sulfonic acid) (p (AMPS)) type hydrogels were synthesized and then loaded with giemsa stain (GS), methylene blue (MB) and rhodamine 6G (R6G) dyes. Since hydrogels can have many water-loving functional groups in their structures, they have the opportunity to be applied in many fields such as medicine, biomedical, pharmacy, cosmetics, agriculture and environment. GS, MB, R6G dyestuffs are frequently used in applications such as pH adjustment and determination in chemistry, biology and medicine, diagnosis and treatment of diseases, and in industry applications requiring dyes, thanks to their ability to bind to substances such as genes, proteins and DNA. Thanks to their fluorescent properties, they can also be used in various optical applications. Optical properties of synthesized and dye loaded hydrogels were analyzed by ultraviolet-visible region (UV-Vis) absorption spectrophotometer and fluorescence spectrophotometer. As a result of these analyzes, it was determined that the optical properties of these dyes were also observed in dye loaded p (AMPS) hydrogels. The electrical properties of p (AMPS) hydrogels and dye loaded hydrogels were examined by conductivity measurements at room temperature. Analyzes of electrical and optical properties have shown that dye loaded p (AMPS) hydrogels have the potential to be used in medical applications, optoelectronic applications such as LED, solar cell, optical filter.STABILIZATION/DISPERSANCY PERFORMANCE ACUMER® 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER® 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces.APPLICATIONS Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, antiscalent and dispersant, ACUMER® 2000 is particularly recommended for the majorities of the cooling water treatment programmes :Phosphate based programmes.Zinc based programmes.Advanced all organic programmes in which ACUMER® 2000 helps corrosion inhibitors onto metal surfaces.ACUMER® 2000 has a synergic effect with the other additives in preventing scale as well as corrosion.BENEFITS OF ACUMER® 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH’s. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life.Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system.Keeps surfaces clean for maximum heat transfer and corrosion resistance.CHEMISTRY AND MODE OF ACTION ACUMER® 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms:Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts.Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations.Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas TEST METHOD ACUMER® 2000 may be analyzed at use concentration with the Hach polyacrylate test kit. This kit employs a patented method developed SAFE HANDLING INFORMATION Caution: – Contact may cause eye irritation and slight skin irritation.First aid measures Contact with skin: wash skin thoroughly with soap and water. Remove contaminated clothing and launder before rewearing.Contact with eyes: flush eyes with plenty of water for at least 15 minutes and then call a physician.If swallowed: if victim is conscious, dilute the liquidby giving the victim water to drink and then call aphysician. If the victim is unconscious, call a physician immediately. Never give an unconscious personanything to drink. Toxicity: – Acute oral (LD50) rats: >5g/kg ACUMERTM 2000 is an excellent phosphate and zinc stabilizer and dispersant of inorganic particulates for anti-scale/anticorrosion cooling water treatment formulations.ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms:Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts.Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations.Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas.ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces.Applications Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs:Phosphate based programs Zinc based programs Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces.Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH’s. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life.Exhibits exceptional stability in the presence of hypochlorite.Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system.Keeps surfaces clean for maximum heat transfer and corrosion resistance.ACUMER is a low molecular weight polyacrylate with a selected molecular weight around 2000 to optimize the anti-scale performance through at least three mechanisms: • Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts (calcium carbonate in particular). • Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations. • Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces.ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms:Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts.Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readilyfractured crystals that do not adhere well to surfaces and can be easily removed during cleaningoperations. Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomeratingand depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groupsadsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them fromaggregating into larger particles which can settle and deposit on tube surfaces and low flow areas.ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces.Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs:Phosphate based programs.Zinc based programs.Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces.ACUMER 2000 has a synergic effect with the other additives in preventing scale as well as corrosion.Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range oftemperatures and pH’s. This stability enables the formulator to manufacture one-package treatments athigh pH for maximum shelf life.Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system.Keeps surfaces clean for maximum heat transfer and corrosion resistance.Test Method If a traceable polymer is required, OPTIDOSETM 2000 offers identical performance to ACUMER 2000, with the ability to detect 0.5 ppm – 15 ppm without interferences.IR-2000 Carboxylate-sulfonate Copolymer Dispersant Properties: IR-2000 carboxylate-sulfonate copolymer is the copolymer of acrylic-acrylate-sulfosate, it is a good scale inhibitor for calcium phosphate, calcium carbonate, and other inorganic minerals. IR-2000 carboxylate-sulfonate copolymer dispersant can effectively stabilize calcium phosphate in the formula containing phosphate. It can also stabilize zinc in a formula containing zinc. IR-2000 can disperse inorganic microparticles without pH influence. IR-2000 carboxylate-sulfonate copolymer is an effective dispersant in all organic water treatment formula, it can be used as a dispersant for minerals, a stabilizer for calcium phosphate. (similar to ACUMER 2000) ACUMER 2000 is recommended for use in cooling water treatments. It is an excellent zinc and phosphate stabilizer and dispersant of inorganic particulates for anti-scale/anti-corrosion.Advantages of Acumer 2000 Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Prevents the formation of deposits on heat transfer surfaces Prevents inorganic and sedimentation fouling Inhibits precipitation of calcium, iron salts, and magnesium The dynamic test was performed using the method of Example 7 at 132° F. to stress the system and increase the scaling tendency. The results are shown in FIG. 4; “new polymer” is that of Example 1; the PMA is BELCLENE 200 from BioLab. The AA/AMPS is ACUMER 2000 from Rohm and Haas. One can see that the new polymer was able to keep more calcium in solution up to a higher cycle of concentration, before precipitation began to occur.The dynamic test was performed using the method of Example 7 at 104° F. to demonstrate the ability of the new polymer to stabilize ferrous iron within the system. The multifunctional polymer of Example 1 (“new polymer”) was compared to the BELCLENE 200 PMA homopolymer, the ACUMER 2000 AA/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) copolymer, and phosphonate. The results are shown in FIG. 6. One can see that the phosphonate and PMA were not able to stabile any ferrous iron throughout the test. The AA/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) copolymer was able to stabilize the ferrous iron up to around 2.4 cycles of concentration, where it failed due to the precipitation of calcium carbonate. The new polymer performed much better, maintaining the ferrous iron concentrations up to nearly 4.0 cycles of concentration.The dynamic test was performed using the method of Example 7 at 110° F. to demonstrate the ability of the new polymer to stabilize ortho-phosphate within the system. The polymer of Example 1 (“new polymer”) was compared to the BELCLENE 200 PMA homopolymer and the ACUMER 2000 AA/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) copolymer. The results are shown in FIG. 7. All three systems had a 3.0 mg/L feed of ortho-phosphate introduced at the same time. Notice how the polymer of Example 1 and AA/AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) treatments were able to achieve and maintain the intended 3.0 mg /L PO4 in solution throughout the test, while the PMA was not. PMA was only able to achieve 1.75 mg/L of ortho-phosphate, which gradually dropped to 1.25 mg/L by the end of the test. The remaining ortho-phosphate was precipitating out as calcium phosphate. A large percentage of this precipitated calcium phosphate deposited as scale on the heat exchangers, which will be shown in the next example.The dynamic test was performed using the method of Example 7 at 110° F. to demonstrate the ability of the new polymer to maintain the cleanliness of the rods. The polymer of Example 1 was compared to the BELCLENE 200 PMA homopolymer and the ACUMER 2000 AA/AMPS copolymer.Acumer 2000 Series (Scale Inhibitor) Deionized water 34% TT50 (Tolyltriazole 50% Actives) 1% Belcene 494 (50% Actives) 10% Dequest 2010 (55% Actives) 5% Acumer 2000 (50% Actives) 5% KOH (45% Actives) 5% Provides pH of 5.0 Acumer 2000® 0.6 – 6.0 deposit control agent sulfonated acrylate copolymer Acumer 2000 2.5 deposit control agent sulfonated acrylate copolymer Acumer
2000 Acumer 2000 Series Polymer Electrolyte Membranes Prepared by Graft Copolymerization of 2-Acrylamido-2-Methylpropane Sulfonic Acid and Acrylic Acid on PVDF and ETFE Activated by Electron Beam Treatment.Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterizationRelationships between the formation mechanism and the swelling behavior of acrylamide (AAm)/2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS)-based hydrogels were studied. The hydrogels were prepared by free-radical crosslinking copolymerization of AAm and AMPS at 408C in the presence of N,N0 methylenebis(acrylamide) (BAAm) as the crosslinker. Both the crosslinker ratio (mole ratio of crosslinker to monomer) and the initial monomer concentration were fixed at 1/82 and 0.700 M, respectively, while the AMPS content in the monomer mixture was varied from 0 to 100 mol%. It was found that the copolymer composition is equal to the monomer feed composition, indicating that the monomer units distribute randomly along the network chains of the hydrogels. The monomer conversion versus time histories as well as the growth rate of the gel during the polymerization were found to be independent of the amount of AMPS in the initial monomer mixture. It was shown that the reaction system separates into two phases at the gel point and the gel grows in a heterogeneous system. The equilibrium degree of swelling of the final hydrogels increases with increasing AMPS content until a plateau is reached at about 10 mol% AMPS. Between 10 and 30 mol% AMPS, the equilibrium gel swelling in water as well as in aqueous NaCl solutions was independent on the ionic group content of the hydrogels. Further increase in the AMPS content beyond this value increased the gel swelling continuously up to 100 mol%. The polyelectrolyte theories based on the counterion condensation cannot explain the observed swelling behavior of AAm/AMPS hydrogels. The swelling curves of the hydrogels in water and in aqueous NaCl solutions were successfully reproduced with the Flory-Rehner theory of swelling equilibrium including the ideal Donnan equilibria, where the effective charge density was taken as an adjustable parameter.Relationships between the formation mechanism and the swelling behavior of acrylamide (AAm)/2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS)-based hydrogels were studied. The hydrogels were prepared by free-radical crosslinking copolymerization of AAm and AMPS at 40°C in the presence of N,N′-methylenebis(acrylamide) (BAAm) as the crosslinker. Both the crosslinker ratio (mole ratio of crosslinker to monomer) and the initial monomer concentration were fixed at 1/82 and 0.700 M, respectively, while the AMPS content in the monomer mixture was varied from 0 to 100 mol%. It was found that the copolymer composition is equal to the monomer feed composition, indicating that the monomer units distribute randomly along the network chains of the hydrogels. The monomer conversion versus time histories as well as the growth rate of the gel during the polymerization were found to be independent of the amount of AMPS in the initial monomer mixture. It was shown that the reaction system separates into two phases at the gel point and the gel grows in a heterogeneous system. The equilibrium degree of swelling of the final hydrogels increases with increasing AMPS content until a plateau is reached at about 10 mol% AMPS. Between 10 and 30 mol% AMPS, the equilibrium gel swelling in water as well as in aqueous NaCl solutions was independent on the ionic group content of the hydrogels. Further increase in the AMPS content beyond this value increased the gel swelling continuously up to 100 mol%. The polyelectrolyte theories based on the counterion condensation cannot explain the observed swelling behavior of AAm/AMPS hydrogels. The swelling curves of the hydrogels in water and in aqueous NaCl solutions were successfully reproduced with the Flory-Rehner theory of swelling equilibrium including the ideal Donnan equilibria, where the effective charge density was taken as an adjustable parameter. Scaling rules were derived for the ionic group content and the effective excluded volume of the hydrogels.The scope of aqueous Cu(0)-mediated living radical polymerisation has been expanded with the preparation of poly(2-acrylamido-2-methylpropane sulfonic acid)sodium salt (P(NaAMPS)) and poly(acryloyl phosphatidycholine) (PAPC). Manipulation of the reaction conditions furnishes polymers capable of undergoing chain extension and supporting the synthesis of block copolymers at 0 °C.Relationships between the formation mechanism and the swelling behavior of acrylamide (AAm)/2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS)-based hydrogels were studied. The hydrogels were prepared by free-radical crosslinking copolymerization of AAm and AMPS at 40°C in the presence of N,N′-methylenebis(acrylamide) (BAAm) as the crosslinker. Both the crosslinker ratio (mole ratio of crosslinker to monomer) and the initial monomer concentration were fixed at 1/82 and 0.700 M, respectively, while the AMPS content in the monomer mixture was varied from 0 to 100 mol%. It was found that the copolymer composition is equal to the monomer feed composition, indicating that the monomer units distribute randomly along the network chains of the hydrogels. The monomer conversion versus time histories as well as the growth rate of the gel during the polymerization were found to be independent of the amount of AMPS in the initial monomer mixture. It was shown that the reaction system separates into two phases at the gel point and the gel grows in a heterogeneous system. The equilibrium degree of swelling of the final hydrogels increases with increasing AMPS content until a plateau is reached at about 10 mol% AMPS. Between 10 and 30 mol% AMPS, the equilibrium gel swelling in water as well as in aqueous NaCl solutions was independent on the ionic group content of the hydrogels. Further increase in the AMPS content beyond this value increased the gel swelling continuously up to 100 mol%. The polyelectrolyte theories based on the counterion condensation cannot explain the observed swelling behavior of AAm/AMPS hydrogels. The swelling curves of the hydrogels in water and in aqueous NaCl solutions were successfully reproduced with the Flory-Rehner theory of swelling equilibrium including the ideal Donnan equilibria, where the effective charge density was taken as an adjustable parameter. Scaling rules were derived for the ionic group content and the effective excluded volume of the hydrogels.Copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS, monomer 1) with 2-hydropropyl methacrylate (monomer 2) was conducted in pure water at 80°C. The reactivity ratios estimated from the compositional data of the copolymers at low conversion are r1=0.04±0.04 and r2=6.30±0.48, and values of Q1 and e1 are 0.16 and 1.37, respectively. Copolymer microstructure predicted by statistical calculation shows mean sequence length of MI shorter than 2. These results can be attributed to the strong repulsion between the ionized chain radical and charged monomer of AMPS.AMPS Monomer (2-Acrylamido-2-Methylpropane sulfonic Acid) Chitosan is considered as one of the best biopolymers for bone tissue engineering application due to its appealing properties such as biocompatible, non-toxic, non-immunogenic, able to accelerate growth rate of bone tissue, possess antibacterial activity and able to form porous structure. Herein, polyelectrolyte complexes (PECs) prepared by simple mixing of chitosan solution and poly-2-acrylamido-2-methylpropane sulfonic acid (PAMPS) solution were investigated. In this study, chitosan concentration were varied from 1.0 to 2.0% (w/v), while concentration of AMPS was fixed at 0.1% (w/v) to know the influence of chitosan concentration on swelling capacity and mechanical properties of obtained PECs. Swelling test and compressive test results showed that the most stable PECs in aqueous environment with highest ultimate compressive strength was PECs obtained from chitosan 2.0% (w/v) – PAMPS 0.1% (w/v) with swelling capacity 3,326% for 2 hours and ultimate compressive strength 1.22 kPa.Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer is the copolymer of acrylic acid and 2-acrylanmido-2-methylpropanesulfonic acid (AMPS). Due to including carboxylic group (scale inhibition and dispersion) and sulfonic acid group (strong polarity) in this copolymer, AA/AMPS has high calcium tolerance and good scale inhibition for calcium phosphate, calcium carbonate and zinc scale. When built with organophosphines, the synergic effect is obvious. Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer is suitable to be used in water quality of high pH and high alkaline, it is one of the ideal scale inhibitor and dispersant on high concentration index.Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer can be used as scale inhibitor and dispersant in open circulating cool water system, oilfield refill water system, metallurgy system and iron & steel plants to prevent sediment of ferric oxide. When built with organophosphorines and zinc salt, the suitable pH value is 7.0~9.5.Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer can also be used as dyeing auxiliaries for textile.AA-AMPS; AA-AMPSA; Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer; Sulfonated Polyacrylic Acid Copolymer;The first example of quasiliving radical polymerization and copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) without previous protection of its strong acid groups catalyzed by [Ru(o-C6H4-2-py)(phen)(MeCN)2]PF6 complex is reported. Nuclear magnetic resonance (RMN) and gel permeation chromatography (GPC) confirmed the diblock structure of the sulfonated copolymers. The poly(2-acryloamido-2-methylpropanesulfonic acid)-b-poly(methyl methacrylate) (PAMPS-b-PMMA) and poly(2-acryloamido-2-methylpropanesulfonic acid)-b-poly(2-hydroxyethylmethacrylate) (PAMPS-b-PHEMA) copolymers obtained are highly soluble in organic solvents and present good film-forming ability. The ion exchange capacity (IEC) of the copolymer membranes is reported. PAMPS-b-PHEMA presents the highest IEC value (3.35 mmol H+/g), but previous crosslinking of the membrane was necessary to prevent it from dissolving in aqueous solution. PAMPS-b-PMMA exhibited IEC values in the range of 0.58-1.21 mmol H+/g and it was soluble in methanol and dichloromethane and insoluble in water. These results are well correlated with both the increase in molar composition of PAMPS and the second block included in the copolymer. Thus, the proper combination of PAMPS block copolymer with hydrophilic or hydrophobic monomers will allow fine-tuning of the physical properties of the materials and may lead to many potential applications, such as polyelectrolyte membrane fuel cells or catalytic membranes for biodiesel production.Diethyl ethanolamine (DEEA), acrylic acid (AA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) were purchased from Sigma Aldrich Chemicals Co. 2,2-Azobisisobutyronitrile, AIBN, is radical initiator purified and recrystallized from methanol solution and produced by Merck. The radical copolymerization of AMPS and AA was carried out at equal monomer ratios in water as solvent as reported in previous work [22].2-Acrylamido-2-methylpropane sulfonic acid (AMPS) was trademarked by Lubrizol Corporation. This reagent can be used to change various chemical properties of anionic polymers of hydrophilic, sulfonic acid acrylic monomer. In the 1970s, the first patent was opened for acrylic fiber production using this monomer. Today, there are several thousand patents and publications involving the use of AMPS in many fields including water treatment, petroleum field, building chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives and rheology modified. 2-ACRYLAMIDO-2-METHYLPROPANE SULPHONIC ADSORPTION OF ACID-BASED HYDROGELS AND HEAVY METALS Hydrogels exhibit important properties due to their intermediate state between liquid and solid. The ability to absorb and store water and aqueous solutions makes hydrogels the only substance in heavy metal ions removal and recovery applications. In this study, thiourea, guanidine and urea modified 2-acrylamido-2-methylpropane sulfonic acid (AMPS) monomers were synthesized in order to remove Pb (II) and Cd (II) ions from aqueous solutions. Then by radical photopolymerization Poly (Thiourea modified AMPS / Acrylic Acid / N-Vinyl-2-Pyrrolidone / 2-Hydroxyethyl Methacrylate) [P (AMPSTU / AAc / NVP / HEMA)] hydrogel, Poly (Guanidine modified AMPS / Acrylic Acid / N- Vinyl-2-Pyrrolidone / 2-Hydroxyethyl Methacrylate) [P (AMPSG / AAc / NVP / HEMA)] hydrogel and Poly (Urea modified AMPS / Acrylic Acid / N-Vinyl-2-Pyrrolidone / 2-Hydroxyethyl Methacrylate) [P ( AMPSU / AAc / NVP / HEMA) hydrogel was prepared. The structures of the monomers and hydrogels were characterized by Fourier Transform Infrared Spectroscopy, Thermal Gravimetric Analysis, and Scanning Electron Microscopy. The effects of pH, initial metal ion concentration and adsorption equilibrium time on the adsorption capacity of hydrogels on metal ions were investigated. [83]. Hydrogels are smart and soft materials that have the ability to change volume and / or shape with an external effect such as temperature and solvent quality. These properties of hydrogels have attracted considerable attention in recent years. However, hydrogels have low mechanical strength. However, they respond slowly to an external influence. These two disadvantages limit the practical application of hydrogels. The aim of this doctoral thesis is to synthesize hydrogels that both have good mechanical strength and can respond immediately to external stimuli. In this context, two methods have been used to obtain gels with very fast response and high mechanical strength (tough). In the first part of the thesis, the gelation of ionic monomer 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS) and crosslinker N, N’-methylenebis (acrylamide) (BAAm) in aqueous solutions using low monomer concentrations and high cross-link amounts reactions have been shown to lead to the formation of microgel-aggregate gels that harden after cysticism.Thus, the free radical crosslinking reactions of AMPS and BAAm were carried out at temperatures below the freezing point of the polymerization solvent. Macroporous poly (AMPS) (PAMPS) hydrogels with different properties, called cryogels, have been synthesized. The cryogelization method provided advantages in two aspects: The cryogels obtained showed a high degree of toughness as well as their super fast response. An important part of this study focuses on the relationship between the formation and properties of cryogels obtained from frozen monomer solutions. In this study, firstly poly (2-acrylamido-2-methylpropane sulphonic acid) (p (AMPS)) type hydrogels were synthesized and then giemsa stain (GS), methylene blue (MB) and rhodamine were investigated. Loaded with 6G (R6G) dyestuffs. Since hydrogels can have many water-loving functional groups in their structures, they have the opportunity to be applied in many fields such as medicine, biomedical, pharmacy, cosmetics, agriculture and environment. GS, MB, R6G dyestuffs are frequently used in applications such as pH adjustment and determination in chemistry, biology and medicine, diagnosis and treatment of diseases, and in industry applications requiring dyes, thanks to their ability to bind to substances such as genes, proteins and DNA. Thanks to their fluorescent properties, they can also be used in various optical applications. Optical properties of synthesized and dye loaded hydrogels were analyzed by ultraviolet-visible region (UV-Vis) absorption spectrophotometer and fluorescence spectrophotometer. As a result of these analyzes, it was determined that the optical properties of these dyes were also observed in dye loaded p (AMPS) hydrogels. The electrical properties of p (AMPS) hydrogels and dye loaded hydrogels were examined by conductivity measurements at room temperature. Analyzes of electrical and optical properties have shown that dye loaded p (AMPS) hydrogels have the potential to be used in medical applications, optoelectronic applications such as LED, solar cell, optical filter. In this study, firstly, poly (2-acrylamido-2-methylpropane sulfonic acid) (p (AMPS)) type hydrogels were synthesized and then loaded with giemsa stain (GS), methylene blue (MB) and rhodamine 6G (R6G) dyes. Since hydrogels can have many water-loving functional groups in their structures, they have the opportunity to be applied in many fields such as medicine, biomedical, pharmacy, cosmetics, agriculture and environment. GS, MB, R6G dyestuffs are frequently used in applications such as pH adjustment and determination in chemistry, biology and medicine, diagnosis and treatment of diseases, and in industry applications requiring dyes, thanks to their ability to bind to substances such as genes, proteins and DNA. Thanks to their fluorescent properties, they can also be used in various optical applications. Optical properties of synthesized and dye loaded hydrogels were analyzed by ultraviolet-visible region (UV-Vis) absorption spectrophotometer and fluorescence spectrophotometer. As a result of these analyzes, it was determined that the optical properties of these dyes were also observed in dye loaded p (AMPS) hydrogels. The electrical properties of p (AMPS) hydrogels and dye loaded hydrogels were examined by conductivity measurements at room temperature. Analyzes of electrical and optical properties have shown that dye loaded p (AMPS) hydrogels have the potential to be used in medical applications, optoelectronic applications such as LED, solar cell, optical filter.

 

TR

 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) IUPAC Ad prop-2-enoik asit; 2- (prop-2-enoilamino) bütan-2-sülfonik asit

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) InChI InChI = 1S / C7H13NO4S.C3H4O2 / c1-4-6 (9) 5-2) 13 (10,11) 12; 1-2-3 (4) 5 / h4H, 1,5H2,2-3H3, (H, 8,9) (H, 10,11,12); 2H , 1H2, (H, 4,5)

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) InChI Key YVDXQYOOUXSXMU-UHFFFAOYSA-N

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) Kanonik SMILES CCC (C) (NC (= O) C = C) S (= O) (= O) OC = CC (= O) O

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) Moleküler Formül C10H17NO6S

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) CAS 40623-75-4

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) Avrupa Topluluu (EC) Numaras 609-852-3

 

 

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Moleküler Arlk 279.31 g / mol

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Hidrojen Ba Donör Says 3

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Hidrojen Ba Alcs Says 6

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Dönebilen Ba Says 5

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Tam Kütle 279.077658 g / mol

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Monoisotopik Kütle 279.077658 g / mol

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Topolojik Polar Yüzey Alan 129 Ų

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Ar Atom Says 18

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Formal Charge 0

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Kompleksite 359

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) zotop Atom Says 0

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Tanml Atom Stereocenter Says 0

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Tanmsz Atom Stereocenter Says 1

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Tanml Ba Stereocenter Says 0

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Tanmsz Ba Stereocenter Says 0

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Covalently-Bonded Unit Count 2

ACUMER 2000 (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Bileik Kanonikalize Evet

 

2-Akrilamido-2-metilpropan sülfonik asit ( AMPS )(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit), Lubrizol Corporation tarafndan ticari marka ad oldu. Bu reaktif, hidrofilik, sülfonik asit akrilik monomerin anyonik polimerlerin çeitli kimyasal özelliklerini deitirmek için kullanlabilir. 1970’lerde bu monomer kullanlarak ilk patent akrilik elyaf üretimi için açlmtr. Bugün, birkaç bin patent ve dahil olmak üzere birçok alanda AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) kullanmn içeren yaynlarda vardr su artma , petrol alannda , yap kimyasallar, hidrojeller tbbi uygulamalar için, kiisel bakm ürünleri, emülsiyon kaplama, yaptrclar ve reoloji modifiye.2-AKRLAMDO-2-METLPROPAN SULFONK AST BAZLI HDROJELLERLE AIR METALLERN ADSORPSYONU Hidrojeller sv ve kat arasnda ara durumlarndan dolay önemli özellikler gösterirler. Ar metal iyonlarnn uzaklatrlmasnda ve geri kazanm uygulamalarnda su ve sulu çözeltileri absorlama ve depolama kabiliyeti hidrojelleri yegane madde yapar. Bu çalmada, sulu çözeltilerden Pb(II) ve Cd(II) iyonlarnn uzaklatrlmas amacyla tiyoüre, guanidin ve üre modifiye 2-akrilamido-2-metilpropan sülfonik asid (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) monomerleri sentezlendi. Sonra radikalik fotopolimerizasyonla Poli(Tiyoüre modifiye AMPS/Akrilik Asit/N-Vinil-2-Pirolidon/2-Hidroksietil Metakrilat) [P(AMPSTU/AAc/NVP/HEMA)] hidrojeli, Poli(Guanidin modifiye AMPS/ Akrilik Asit / N-Vinil-2-Pirolidon /2-Hidroksietil Metakrilat) [P(AMPSG/AAc/NVP/HEMA)] hidrojeli ve Poli(Üre modifiye AMPS/ Akrilik Asit / N-Vinil-2-Pirolidon /2-Hidroksietil Metakrilat) [P(AMPSU/AAc/NVP/HEMA)] hidrojeli hazrland. Monomer ve hidrojellerin yaplar Fourier Transform Infrared Spektroskopisi, Termal Gravimetrik Analiz, Taramal Elektron Mikroskobu ile karakterize edildi. Hidrojellerin metal iyonlarn adsorplama kapasitesi üzerine pH, balangç metal iyon konsantrasyonu ve adsorpsiyon denge süresinin etkisi incelendi.Akrilamid / 2-Akrilamido-2-Metilpropan Sülfonik Asit ve Akrilik Asit / 2-Akrilamido-2-Metilpropan Sülfonik Asitden oluan hidrojeller sentezlemiler ve bu ürünlerin ime özellikleri üzerinde çapraz balayc ve mol orannn etkilerini incelemilerdir[83].Hidrojeller, scaklk ve solvent kalitesi gibi bir ds etkiyle hacim ve/veya sekil degistirebilme yetenegine sahip akll ve yumusak malzemelerdir. Hidrojellerin bu özellikleri son yllarda oldukça ilgi çekmektedir. Ancak, hidrojellerin mekanik dayankllg düsüktür. Bununla beraber, bir ds etkiye kars yavas cevap verirler. Bu iki dezavantaj hidrojellerin pratik uygulamalarn kstlar. Bu doktora tezinin amac, hem mekanik dayankllg çok iyi olan hem de dsardan gelen uyarlara hemen cevap verebilen hidrojeller sentezlemektir. Bu baglamda, çok hzl cevap verebilen ve mekanik dayankllg yüksek olan (tok) jeller elde etmek için iki yöntem kullanlmstr. Tezin ilk bölümünde, iyonik monomer 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) ve çapraz baglayc N,N’-metilenbis (akrilamid) (BAAm)’in düsük monomer konsantrasyonu ve yüksek çapraz bag miktarlar kullanlarak sulu çözeltilerinde gerçeklesen jellesme reaksiyonlarnn, sistikten sonra sertlesen mikrojel-agyap jellerinin olusumuna yol açtg gösterilmistir. Bu yöntemle, sismis hidrojellerin mekanik özellikleri iyilestirilmesine ragmen, bir ds etkiye kars cevap verme hzlarnn oldukça düsük oldugu görülmüstür. Bundan dolay, ikinci bir yöntem olarak, kriyojellesme teknigi varolan jellesme sistemine uygulanarak polimer matrisinin içinde birbirine bagl gözenek yaps olusturulmustur. Böylece, AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) ve BAAm’in serbest radikal çapraz baglanma reaksiyonlar, polimerizasyon çözücüsünün donma noktasnn altndaki scaklklarda gerçeklestirilmistir. Farkl özelliklere sahip, kriyojel ad verilen, makrogözenekli poli(AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) (PAMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hidrojelleri sentezlenmistir. Kriyojellesme metodu iki açdan avantaj saglamstr: Elde edilen kriyojeller, süper hzl cevap verebilmelerinin yannda, yüksek derecede tokluk göstermislerdir. Bu çalsmann önemli bir ksm, donmus monomer çözeltilerinden elde edilen kriyojellerin olusumlar ve özellikleri arasndaki iliski üzerine durmaktadr. Birçok deneysel parametrenin, jellerin özellikleri üzerine etkisi incelenmistir.Bu çalmada, öncelikle poli(2-akrilamido-2-metilpropan sülfonik asit) (p(AMPS)) türü hidrojeller sentezlenmi ve sonrasnda giemsa stain (GS), methylene blue (MB) ve rhodamin 6G (R6G) boya maddeleri ile yüklenmitir. Hidrojeller yaplarnda suyu seven birçok fonksiyonel gruba sahip olabilmeleri nedeniyle özellikle tp, biyomedikal, eczaclk, kozmetik, tarm, çevre gibi pek çok alanda uygulama imkânna sahiptir. GS, MB, R6G boya maddeleri gen, protein, DNA gibi maddelere balanabilmeleri sayesinde kimya, biyoloji ve tpta pH ayarlama ve belirleme, hastalk tehis ve tedavisi gibi uygulamalarda ve endüstride de boya gerektiren uygulamalarda sklkla kullanlmaktadrlar. Floresan özellik göstermeleri sayesinde çeitli optik uygulamalarda da kullanm alanna sahiptirler. Sentezlenen ve boya yüklenen hidrojellerin optik özellikleri morötesi-görünür bölge (UV-Vis) sourma spektrofotometre ve floresans spektrofotometre ile analiz edilmitir. Bu analizler sonucunda, bu boyalarn optik özelliklerinin boya yüklenen p(AMPS) hidrojellerde de gözlemlendii belirlenmitir. p(AMPS) hidrojellerin ve boya yüklenmi hidrojellerin elektriksel özellikleri oda scaklnda iletkenlik ölçümleri ile incelenmitir. Elektriksel ve optik özelliklerinin analizleri boya yüklenmi p(AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hidrojellerin tbbi uygulamalarda, LED, güne gözesi, optik filtre gibi optoelektronik uygulamalarda kullanlma potansiyeline sahip olduunu göstermitir. bu çalmada, öncelikle poli(2-akrilamido-2-metilpropan sülfonik asit) (p(AMPS)) türü hidrojeller sentezlenmi ve sonrasnda giemsa stain (GS), methylene blue (MB) ve rhodamin 6G (R6G) boya maddeleri ile yüklenmitir. Hidrojeller yaplarnda suyu seven birçok fonksiyonel gruba sahip olabilmeleri nedeniyle özellikle tp, biyomedikal, eczaclk, kozmetik, tarm, çevre gibi pek çok alanda uygulama imkânna sahiptir. GS, MB, R6G boya maddeleri gen, protein, DNA gibi maddelere balanabilmeleri sayesinde kimya, biyoloji ve tpta pH ayarlama ve belirleme, hastalk tehis ve tedavisi gibi uygulamalarda ve endüstride de boya gerektiren uygulamalarda sklkla kullanlmaktadrlar. Floresan özellik göstermeleri sayesinde çeitli optik uygulamalarda da kullanm alanna sahiptirler. Sentezlenen ve boya yüklenen hidrojellerin optik özellikleri morötesi-görünür bölge (UV-Vis) sourma spektrofotometre ve floresans spektrofotometre ile analiz edilmitir. Bu analizler sonucunda, bu boyalarn optik özelliklerinin boya yüklenen p(AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hidrojellerde de gözlemlendii belirlenmitir. p(AMPS) hidrojellerin ve boya yüklenmi hidrojellerin elektriksel özellikleri oda scaklnda iletkenlik ölçümleri ile incelenmitir. Elektriksel ve optik özelliklerinin analizleri boya yüklenmi p(AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hidrojellerin tbbi uygulamalarda, LED, güne gözesi, optik filtre gibi optoelektronik uygulamalarda kullanlma potansiyeline sahip olduunu göstermitir.STABLZASYON / DAITIM PERFORMANSI ACUMER® 2000 polimer, kalsiyum fosfatn üstün stabilizasyonunu salamak için tasarlanmtr. Ayrca çinko ve kalsiyum karbonatn mükemmel stabilizasyonunu gösterir. Ek olarak ACUMER® 2000, silt ve yaygn olarak karlalan inorganik partiküllerin askda tutulmas ve s transfer yüzeylerine çökelmesinin önlenmesinde güçlü bir datcdr. UYGULAMALAR Soutma suyu artm için Stabilizatör / kireç önleyici çökelme polimeri Tüm tamamlayc özelliklerinden yararlanarak ve stabilizatör, antiscalent ve dispersan olarak yüksek performansl ACUMER® 2000, özellikle soutma suyu artma programlarnn çou için tavsiye edilir: Fosfat bazl programlar, Çinko bazl programlar. ACUMER® 2000’in metal yüzeylerde korozyon inhibitörlerine yardmc olduu tüm organik programlar gelitirildi. ACUMER® 2000, korozyonun yan sra kireçlenmeyi önlemede dier katk maddeleri ile sinerjik bir etkiye sahiptir. ACUMER® 2000’N FAYDALARI Mükemmel termal ve kimyasal stabilite sergiler ve geni bir scaklk ve pH aralnda kullanlabilir ve saklanabilir. Bu stabilite, formülatörün maksimum raf ömrü için yüksek pH’da tek paketli ilemler üretmesini salar. Piyasada bulunan polimerlerin çou sistemde çözünür demir varlnda etkisiz hale getirildiinde üstün demir tolerans salar. Maksimum s transferi için yüzeyleri temiz tutar ve korozyon direnci.KMYA VE EYLEM EKL ACUMER® 2000 kopolimer, aadaki farkl mekanizmalar araclyla optimum kireç önleyici / datc verimlilii salayan iki ilevsel grubu birletirir: güçlü asit (sülfonat) ve zayf asit (karboksilat): Eik etkisiyle çözünürlük art Çözünürlüü düük inorganik tuzlarn çökelmesini azaltr. Büyüyen inorganik tuz kristalini deforme ederek yüzeylere iyi yapmayan ve temizleme ilemleri srasnda kolayca çkarlabilen küçük, düzensiz, kolayca krlan kristaller veren kristal modifikasyonu. Çökelmi kristalleri önleyen datma aktivitesi veya aglomerasyon ve biriktirmeden kaynaklanan dier inorganik partiküller yüzeylerde. Sülfonat gruplar, partiküller üzerine adsorbe edilen karboksilat gruplarnn negatif yükünü arttrr ve daha sonra partiküller arasndaki itmeyi güçlendirerek daha büyük partiküller halinde toplanmalarn önler, bu da tüp yüzeylerinde ve düük ak alanlarnda çökelebilir ve birikebilir TEST YÖNTEM ACUMER® 2000 Hach poliakrilat test kiti ile kullanm konsantrasyonunda analiz edilebilir. Bu kit, gelitirilmi patentli bir yöntem kullanr GÜVENL KULLANIM BLGS Dikkat: – Temas, göz tahriine ve hafif cilt tahriine neden olabilir. lk yardm önlemleri Deri ile temas: Cildi sabun ve suyla iyice ykayn. Kirlenmi giysileri çkarn ve tekrar giymeden önce ykayn Gözlerle temasa geçin: gözleri en az 15 dakika bol su ile ykayn ve ardndan bir doktor çarn Yutulmas halinde: kazazedenin bilinci açksa, kazazedenin su içmesini salayarak svy seyreltin ve ardndan afizikçiyi arayn . Kurban bilinçsiz ise, derhal bir doktor çarn. Bilinçsiz bir kiiye asla içecek bir ey vermeyin. Toksisite:- Akut oral (LD50) sçanlar:> 5g / kg ACUMER TM 2000, kireç önleyici / korozyon önleyici soutma suyu artma formülasyonlar için mükemmel bir fosfat ve çinko stabilizatörü ve inorganik partiküllerin datcsdr. ACUMER 2000 kopolimeri iki fonksiyonel grubu birletirir: güçlü asit (sülfonat ) ve aadaki farkl mekanizmalar yoluyla optimum kireç önleyici / datc etkinlii salayan zayf asit (karboksilat): Düük çözünürlüklü inorganik tuzlarn çökelmesini azaltan eik etkisiyle çözünürlük art. Büyüyen inorganik tuz kristalini küçültmek için deforme eden kristal modifikasyonu Düzensiz, yüzeylere iyi yapmayan ve temizleme ilemleri srasnda kolayca çkarlabilen kristaller. Çöken kristallerin veya dier inorganik partiküllerin topaklanmasn ve yüzeylerde birikmesini önleyen dispersiyon aktivitesi. Sülfonat gruplar, partiküller üzerine adsorbe edilen karboksilat gruplarnn negatif yükünü arttrr ve daha sonra partiküller arasndaki itmeyi güçlendirerek, bunlarn daha büyük partiküller halinde toplanmasn önler, bu da tüp yüzeylerinde ve düük ak alanlarnda çökelebilir ve birikebilir. kalsiyum fosfatn üstün stabilizasyonunu salamak için tasarlanmtr. Ayrca çinko ve kalsiyum karbonatn mükemmel stabilizasyonunu gösterir. Ayrca ACUMER 2000, silt ve yaygn olarak karlalan inorganik partiküllerin askda tutulmas ve s transfer yüzeylerine yerlemesinin önlenmesinde güçlü bir datcdr. Uygulamalar Stabilizatör / Soutma suyu artm için kireç önleyici çökelme polimeri Tüm tamamlayc özelliklerinden ve yüksek stabilizatör, kireç önleyici ve datc olarak performans, ACUMER 2000 özellikle soutma suyu artma programlarnn çounluu için tavsiye edilir: Fosfat bazl programlar Çinko bazl programlar Gelimi Tüm Organik programlar ACUMER 2000’in fosfonatlar gibi metal üzerinde korozyon inhibitörlerine yardmc olduu ACUMER 2000’in Faydalar Mükemmel termal ve kimyasal kararllk sergiler ve geni bir scaklk ve pH aralnda kullanlabilir ve saklanabilir. Bu stabilite, formülatörün maksimum raf ömrü için yüksek pH’da tek paketli muameleler üretmesini salar. Hipoklorit varlnda olaanüstü stabilite sergiler. Piyasada bulunan polimerlerin çou sistemde çözünür demir varlnda devre d brakldnda üstün demir tolerans salar. Maksimum s transferi ve korozyon direnci için yüzeyleri temiz tutar. ACUMER, en az üç mekanizma araclyla kireç önleyici performans optimize etmek için 2000 civarnda seçilmi bir moleküler arla sahip düük moleküler arlkl bir poliakrilattr: • Eik etkisiyle çözünürlük art, düük çözünürlüklü inorganik tuzlar (özellikle kalsiyum karbonat). • Büyüyen inorganik tuz kristalini deforme ederek yüzeylere iyi yapmayan ve temizlik ilemleri srasnda kolayca çkarlabilen küçük, düzensiz, kolayca krlan kristaller veren kristal modifikasyonu. • Çökelmi kristallerin veya dier inorganik partiküllerin topaklamasn ve yüzeylerde birikmesini önleyen dispersiyon aktivitesi. ACUMER 2000 kopolimeri iki fonksiyonel grubu birletirir: aadakiler araclyla optimum kireç önleyici / dispersan verimlilii salayan güçlü asit (sülfonat) ve zayf asit (karboksilat) farkl mekanizmalar: Düük çözünürlüe sahip inorganik tuzlarn çökelmesini azaltan eik etkisiyle çözünürlük artrma. Büyüyen inorganik tuz kristalini deforme ederek yüzeylere iyi yapmayan ve temizlik ilemleri srasnda kolayca çkarlabilen küçük, düzensiz, kolayca krlan kristaller veren kristal modifikasyonu . Çöken kristallerin veya dier inorganik partiküllerin topaklanmasn ve yüzeylerde birikmesini önleyen datma aktivitesi. Sülfonat gruplar, partiküller üzerine adsorbe edilen karboksilat gruplarnn negatif yükünü arttrr ve daha sonra partiküller arasndaki itmeyi güçlendirerek, bunlarn daha büyük partiküller halinde toplanmasn önler, bu da tüp yüzeylerinde ve düük ak alanlarnda çökelebilir.ACUMER 2000 polimer, üstün kalsiyum fosfat stabilizasyonu salamak için tasarlanmtr. Ayrca çinko ve kalsiyum karbonatn mükemmel stabilizasyonunu gösterir. Ayrca ACUMER 2000, silt ve yaygn olarak karlalan inorganik partiküllerin askda tutulmas ve s transfer yüzeylerine yerlemesinin önlenmesinde güçlü bir datcdr.Tüm tamamlayc özelliklerinden ve stabilizatör, kireç önleyici ve dispersan olarak yüksek performansndan faydalanan ACUMER 2000 özellikle soutma suyu artma programlarnn çounluu için tavsiye edilir: Fosfat bazl programlar Çinko bazl programlar Gelimi Tüm Organik programlar ACUMER 2000, metal yüzeyler üzerinde fosfonatlar gibi korozyon inhibitörlerine yardmc olur. ACUMER 2000 ile sinerjik bir etkiye sahiptir. kireç ve korozyonu önlemede dier katk maddeleri ACUMER 2000’in Faydalar Mükemmel termal ve kimyasal kararllk sergiler ve geni bir scaklk ve pH aralnda kullanlabilir ve saklanabilir. Bu stabilite, formülatörün maksimum raf ömrü için tek paketli muameleler üretmesini salar. Piyasada bulunan polimerlerin çou sistemde çözünür demir varlnda devre d brakldnda üstün demir tolerans salar. Maksimum s transferi ve korozyon için yüzeyleri temiz tutar. Test Yöntemi zlenebilir bir polimer gerekiyorsa OPTIDOSE TM 2000, müdahale olmakszn 0,5 ppm – 15 ppm alglama yetenei ile ACUMER 2000 ile ayn performans sunar IR-2000 Karboksilat-sülfonat Kopolimer Datc Özellikler: IR-2000 karboksilat -sülfonat kopolimeri, akrilik-akrilat-sülfosatn kopolimeridir, kalsiyum fosfat, kalsiyum karbonat ve dier inorganik mineraller için iyi bir ölçek inhibitörüdür. IR-2000 karboksilat-sülfonat kopolimer datc, fosfat içeren formülde kalsiyum fosfat etkili bir ekilde stabilize edebilir. Ayrca çinko içeren bir formülde çinkoyu stabilize edebilir. IR-2000, inorganik mikropartikülleri pH etkisi olmadan databilir. IR-2000 karboksilat-sülfonat kopolimeri, tüm organik su artma formüllerinde etkili bir datcdr, mineraller için bir datc, kalsiyum fosfat için bir stabilizatör olarak kullanlabilir. (ACUMER 2000’e benzer) ACUMER 2000, soutma suyu artmalarnda kullanlmas tavsiye edilir. Anti-korozyon / anti-korozyon için mükemmel bir çinko ve fosfat stabilizatörü ve inorganik partikül datcsdr Acumer 2000’in Avantajlar Çinko, fosfat ve fosfonatlar gibi korozyon inhibitörlerini stabilize eder Is transfer yüzeylerinde tortu oluumunu engeller norganik ve tortulamay önler kirlenme Kalsiyum, demir tuzlar ve magnezyumun çökelmesini engeller Dinamik test, sistemi zorlamak ve ölçeklenme eilimini arttrmak için 132 ° F’de Örnek 7’nin yöntemi kullanlarak gerçekletirildi. Sonuçlar ekil 2’de gösterilmektedir. 4; “Yeni polimer”, Örnek 1’dekidir; PMA, BioLab’dan BELCLENE 200’dür. AA / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit), Rohm and Haas’tan ACUMER 2000’dir. Yeni polimerin, çökelme olumaya balamadan önce daha yüksek bir konsantrasyon döngüsüne kadar çözeltide daha fazla kalsiyum tutabildii görülebilir.Dinamik test, yeni polimerin sistem içinde ferröz demiri stabilize etme yeteneini göstermek için 104 ° F’de Örnek 7 yöntemi kullanlarak gerçekletirildi. Örnek 1’in çok ilevli polimeri (“yeni polimer”) BELCLENE 200 PMA homopolimeri, ACUMER 2000 AA / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) kopolimeri ve fosfonat ile karlatrld. Sonuçlar ekil 2’de gösterilmektedir. 6. Fosfonat ve PMA’nn test boyunca herhangi bir demirli demiri sabitleyemedii görülebilir. AA / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) kopolimeri, demirli demiri, kalsiyum karbonatn çökelmesi nedeniyle baarsz olduu yaklak 2,4 döngü konsantrasyonuna kadar stabilize edebildi. Yeni polimer, ferröz demir konsantrasyonlarn yaklak 4.0 döngü konsantrasyona kadar koruyarak çok daha iyi performans gösterdi. Dinamik test, yeni polimerin içerisindeki orto-fosfat stabilize etme yeteneini göstermek için 110 ° F’de Örnek 7 yöntemi kullanlarak gerçekletirildi. sistem. Örnek 1 polimeri (“yeni polimer”) BELCLENE 200 PMA homopolimer ve ACUMER 2000 AA / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) kopolimer ile karlatrld. Sonuçlar ekil 2’de gösterilmektedir. 7. Üç sisteme de 3.0 mg / L orto-fosfat beslemesi ayn anda dahil edildi. Örnek 1 ve AA / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) ilemlerinin polimerinin amaçlanan 3.0 mg / L PO4’ü test boyunca çözelti içinde elde edip koruyabildiine, ancak PMA’nn olmadna dikkat edin. PMA yalnzca 1,75 mg / L orto-fosfat elde edebildi, bu da testin sonunda kademeli olarak 1,25 mg / L’ye dütü. Kalan orto-fosfat kalsiyum fosfat olarak çökeliyordu. Bu çökeltilmi kalsiyum fosfatn büyük bir yüzdesi, bir sonraki örnekte gösterilecek olan s eanjörlerinde ölçek olarak birikmitir. Dinamik test, yeni polimerin aadakileri yapabildiini göstermek için 110 ° F’de Örnek 7 yöntemi kullanlarak gerçekletirilmitir. çubuklarn temizliini koruyun. Örnek 1 polimeri BELCLENE 200 PMA homopolimeri ve ACUMER 2000 AA / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) kopolimeri ile karlatrlmtr. Tüketici 2000 Serisi (Kireç Önleyici) Deiyonize su% 34 TT50 (Tolyltriazole% 50 Aktif)% 1 Belcene 494 (% 50 Aktif) 10 % Dequest 2010 (% 55 Aktifler)% 5 Acumer 2000 (% 50 Aktifler)% 5 KOH (% 45 Aktifler)% 5 5,0 pH salar Acumer 2000® 0,6 – 6,0 tortu kontrol ajan sülfonatl akrilat kopolimer Acumer 2000 2,5 tortu kontrol ajan sülfonatl akrilat kopolimer Acumer2000 Acumer 2000 Serisi Polimer Elektrolit Membranlar Elektron In lemiyle Aktive Edilmi PVDF ve ETFE Üzerindeki 2-Akrilamido-2-Metilpropan Sülfonik Asit ve Akrilik Asidin A Kopolimerizasyonu ile Hazrlanan Akrilamid / 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu bazl hidrojeller: sentez ve karakterizasyon Akrilamid (AAm) / 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) bazl hidrojellerin oluum mekanizmas ve ime davran arasndaki ilikiler incelenmitir. Hidrojeller, çapraz balayc olarak N, N0 metilenbis (akrilamid) (BAAm) varlnda 40 ° C’de AAm ve AMPS’nin(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) serbest radikal çapraz balama kopolimerizasyonu ile hazrland. Hem çapraz balayc oran (çapraz balaycnn monomere mol oran) hem de balangç ​​monomer konsantrasyonu srasyla 1/82 ve 0.700 M’de sabitlenirken, monomer karmndaki AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içerii% 0 ila% 100 mol arasnda deimitir. Kopolimer bileiminin monomer besleme bileimine eit olduu bulundu, bu da monomer birimlerinin hidrojellerin a zincirleri boyunca rastgele daldn gösterir. Monomer dönüümüne kar zaman geçmilerinin yan sra polimerizasyon srasnda jelin büyüme hznn, ilk monomer karmndaki AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) miktarndan bamsz olduu bulundu. Reaksiyon sisteminin jel noktasnda iki faza ayrld ve jelin heterojen bir sistemde büyüdüü gösterilmitir. Nihai hidrojellerin denge ime derecesi, yaklak% 10 mol AMPS’de(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) bir platoya ulalana kadar artan AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içerii ile artar. Mol% 10 ila 30 AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) arasnda, suda ve sulu NaCl çözeltilerinde ime denge jeli, hidrojellerin iyonik grup içeriinden bamszd. AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içeriindeki bu deerin ötesinde daha fazla art, jel imesini sürekli olarak% 100 mol’e kadar arttrd.Kar iyon younlamasna dayanan polielektrolit teorileri, AAm / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hidrojellerinin gözlenen ime davrann açklayamaz. Hidrojellerin sudaki ve sulu NaCl çözeltilerindeki ime erileri, Flory-Rehner ime dengesi teorisi ile baarl bir ekilde yeniden oluturuldu; burada, etkili yük younluunun ayarlanabilir bir parametre olarak alnd ideal Donnan dengesi de dahil. Oluum mekanizmas ve arasndaki ilikiler. akrilamid (AAm) / 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) bazl hidrojellerin ime davran incelenmitir. Hidrojeller, çapraz balayc olarak N, N′-metilenbis (akrilamid) (BAAm) varlnda 40 ° C’de AAm ve AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit)’nin serbest radikal çapraz balanma kopolimerizasyonu ile hazrland. Hem çapraz balayc oran (çapraz balaycnn monomere mol oran) hem de balangç ​​monomer konsantrasyonu srasyla 1/82 ve 0.700 M’de sabitlenirken, monomer karmndaki AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içerii% 0 ila% 100 mol arasnda deimitir. Kopolimer bileiminin monomer besleme bileimine eit olduu bulundu, bu da monomer birimlerinin hidrojellerin a zincirleri boyunca rastgele daldn gösterir. Monomer dönüümüne kar zaman geçmilerinin yan sra polimerizasyon srasnda jelin büyüme hznn, ilk monomer karmndaki AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) miktarndan bamsz olduu bulundu. Reaksiyon sisteminin jel noktasnda iki faza ayrld ve jelin heterojen bir sistemde büyüdüü gösterilmitir. Nihai hidrojellerin denge ime derecesi, yaklak% 10 mol AMPS’de (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) bir platoya ulalana kadar artan AMPS (2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içerii ile artar. Mol% 10 ila 30 AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) arasnda, suda ve sulu NaCl çözeltilerinde ime denge jeli, hidrojellerin iyonik grup içeriinden bamszd. AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içeriindeki bu deerin ötesinde daha fazla art, jel imesini sürekli olarak% 100 mol’e kadar arttrd. Kar iyon younlamasna dayanan polielektrolit teorileri, AAm / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hidrojellerinin gözlenen ime davrann açklayamaz. Hidrojellerin sudaki ve sulu NaCl çözeltilerindeki ime erileri, Flory-Rehner ime dengesi teorisi ile, etkili yük younluunun ayarlanabilir bir parametre olarak alnd ideal Donnan dengesini içeren baarl bir ekilde yeniden üretildi. yonik grup içerii ve hidrojellerin etkin hariç tutulan hacmi için ölçekleme kurallar türetildi. Sulu Cu (0) aracl canl radikal polimerizasyonunun kapsam, poli (2-akrilamido-2-metilpropan sülfonik asit) hazrlanmasyla geniletildi. sodyum tuzu (P (NaAMPS)) ve poli (akriloil fosfatidkolin) (PAPC). Reaksiyon koullarnn manipülasyonu, 0 ° C’de zincir uzamas geçirebilen ve blok kopolimerlerin sentezini destekleyebilen polimerler salar. Oluum mekanizmas ile akrilamid (AAm) / 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzunun ime davran arasndaki ilikiler (AMPS)(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) bazl hidrojeller incelenmitir. Hidrojeller, çapraz balayc olarak N, N′-metilenbis (akrilamid) (BAAm) varlnda 40 ° C’de AAm ve AMPS’nin(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) serbest radikal çapraz balanma kopolimerizasyonu ile hazrland. Hem çapraz balayc oran (çapraz balaycnn monomere mol oran) hem de balangç ​​monomer konsantrasyonu srasyla 1/82 ve 0.700 M’de sabitlenirken, monomer karmndaki AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içerii% 0 ila% 100 mol arasnda deimitir. Kopolimer bileiminin monomer besleme bileimine eit olduu bulundu, bu da monomer birimlerinin hidrojellerin a zincirleri boyunca rastgele daldn gösterir. Monomer dönüümüne kar zaman geçmilerinin yan sra polimerizasyon srasnda jelin büyüme hznn, ilk monomer karmndaki AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) miktarndan bamsz olduu bulundu. Reaksiyon sisteminin jel noktasnda iki faza ayrld ve jelin heterojen bir sistemde büyüdüü gösterilmitir. Nihai hidrojellerin denge ime derecesi, yaklak% 10 mol AMPS’de(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) bir platoya ulalana kadar artan AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içerii ile artar.Mol% 10 ila 30 AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) arasnda, suda ve sulu NaCl çözeltilerinde ime denge jeli, hidrojellerin iyonik grup içeriinden bamszd. AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) içeriindeki bu deerin ötesinde daha fazla art, jel imesini sürekli olarak% 100 mol’e kadar arttrd. Kar iyon younlamasna dayanan polielektrolit teorileri, AAm / AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) hidrojellerinin gözlenen ime davrann açklayamaz. Hidrojellerin sudaki ve sulu NaCl çözeltilerindeki ime erileri, Flory-Rehner ime dengesi teorisi ile, etkili yük younluunun ayarlanabilir bir parametre olarak alnd ideal Donnan dengesini içeren baarl bir ekilde yeniden üretildi. yonik grup içerii ve hidrojellerin etkin hariç tutulan hacmi için ölçekleme kurallar türetilmitir. 2-akrilamido-2-metilpropan sülfonik asidin (AMPS, monomer 1) 2-hidropropil metakrilat (monomer 2) ile kopolimerizasyonu, 80 ° C. Düük dönüümde kopolimerlerin bileim verilerinden tahmin edilen reaktivite oranlar r1 = 0.04 ± 0.04 ve r2 = 6.30 ± 0.48’dir ve Q1 ve e1 deerleri srasyla 0.16 ve 1.37’dir. statistiksel hesaplama ile tahmin edilen kopolimer mikroyaps, MI’nn ortalama sekans uzunluunun 2’den daha ksa olduunu gösterir. Bu sonuçlar, iyonize zincir radikali ile AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit)’nin yüklü monomeri arasndaki güçlü itmeye atfedilebilir.AMPS(2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID-ACRYLIC ACID COPOLYMER) (2-Akrilamido-2-metilpropan sülfonik asit) Monomer (2-Akrilamido-2-Metilpropan sülfonik Asit) Kitosan Biyouyumlu, toksik olmayan, immünojenik olmayan, kemik dokusunun büyüme hzn hzlandrabilen, antibakteriyel aktiviteye sahip ve gözenekli yap oluturabilen gibi çekici özellikleri nedeniyle kemik dokusu mühendislii uygulamas için en iyi biyopolimerlerden biri olarak kabul edilmektedir. Burada kitosan çözeltisi ile poli-2-akrilamido-2-metilpropan sülfonik asit (PAMPS) çözeltisinin basitçe kartrlmasyla hazrlanan polielektrolit kompleksleri (PEC’ler) incelenmitir. Bu çalmada, kitosan konsantrasyonunun elde edilen PEC’lerin ime kapasitesi ve mekanik özellikleri üzerindeki etkisini bilmek için, kitosan konsantrasyonu% 1.0 ila 2.0 (w / v) arasnda deiirken, AMPS konsantrasyonu% 0.1 (w / v) olarak sabitlenmitir. ime testi ve basnç testi sonuçlar, sulu ortamda en yüksek basnç dayanmna sahip en kararl PEC’lerin, 2 saat boyunca% 3,326 ime kapasiteli kitosan% 2,0 (w / v) – PAMPS% 0,1 (w / v) ‘den elde edilen PEC’ler olduunu göstermitir. 1.22 kPa.Akrilik Asit-2-Akrilamido-2-Metilpropan Sülfonik Asit Kopolimer, akrilik asit ve 2-akrilanmido-2-metilpropansülfonik asit (AMPS) kopolimeridir. Bu kopolimerde karboksilik grup (ölçek inhibisyonu ve dispersiyon) ve sülfonik asit grubu (güçlü polarite) içermesi nedeniyle, AA / AMPS yüksek kalsiyum toleransna ve kalsiyum fosfat, kalsiyum karbonat ve çinko skalas için iyi ölçek inhibisyonuna sahiptir. Organofosfinlerle oluturulduunda sinerjik etki açktr. Akrilik Asit-2-Akrilamido-2-Metilpropan Sülfonik Asit Kopolimer, yüksek pH ve yüksek alkali su kalitesinde kullanma uygun olup, yüksek konsantrasyon indeksinde ideal kireç önleyici ve datclardandr.Akrilik Asit-2-Akrilamido-2-Metilpropan Sülfonik Asit Kopolimer, demir oksit tortusunu önlemek için açk sirkülasyonlu souk su sistemi, petrol sahas doldurma suyu sistemi, metalurji sistemi ve demir-çelik fabrikalarnda kireç önleyici ve datc olarak kullanlabilir. Organofosforinler ve çinko tuzu ile oluturulduunda, uygun pH deeri 7.0 ~ 9.5’tir. Akrilik Asit-2-Akrilamido-2-Metilpropan Sülfonik Asit Kopolimeri, tekstil için boyama yardmclar olarak da kullanlabilir. AA-AMPS; AA-AMPSA; Akrilik Asit-2-Akrilamido-2-Metilpropan Sülfonik Asit Kopolimeri; Sülfonatl Poliakrilik Asit Kopolimeri; [Ru (o-C6H4-2-py) (fen) tarafndan katalize edilen güçlü asit gruplarnn ön korumas olmadan 2-akrilamido-2-metilpropan sülfonik asidin (AMPS) yar yarya radikal polimerizasyonu ve kopolimerizasyonunun ilk örnei ) (MeCN) 2] PF6 kompleksi rapor edilir. Nükleer manyetik rezonans (RMN) ve jel geçirgenlik kromatografisi (GPC), sülfonatl kopolimerlerin ikili blok yapsn dorulad. Poli (2-akriloamido-2-metilpropansülfonik asit) -b-poli (metil metakrilat) (PAMPS-b-PMMA) ve poli (2-akriloamido-2-metilpropansülfonik asit) -b-poli (2-hidroksietilmetakrilat) (PAMPS -b-PHEMA) kopolimerler, organik çözücüler içinde oldukça çözünürdür ve iyi bir film oluturma özellii gösterir. Kopolimer membranlarn iyon deiim kapasitesi (IEC) rapor edilir. PAMPS-b-PHEMA, en yüksek IEC deerini (3.35 mmol H + / g) sunar, ancak sulu çözelti içinde çözünmesini önlemek için membrann önceden çapraz balanmas gerekliydi. PAMPS-b-PMMA, 0.58-1.21 mmol H + / g aralnda IEC deerleri sergilemitir ve metanol ve diklorometan içinde çözünür ve suda çözünmezdi. Bu sonuçlar, hem PAMPS’n molar bileimindeki art hem de kopolimere dahil edilen ikinci blok ile iyi ilikilidir. Bu nedenle, PAMPS blok kopolimerinin hidrofilik veya hidrofobik monomerlerle uygun kombinasyonu, malzemelerin fiziksel özelliklerinin ince ayarna izin verecektir ve polielektrolit membran yakt hücreleri veya biyodizel üretimi için katalitik membranlar gibi birçok potansiyel uygulamaya yol açabilir. DEEA), akrilik asit (AA) ve 2-akrilamido-2-metilpropan sülfonik asit (AMPS), Sigma Aldrich Chemicals Co.’dan satn alnmtr. 2,2-Azobisizobütironitril, AIBN, radikal balatcdr ve metanol çözeltisinden yeniden kristalletirilir ve Merck tarafndan üretilir. . AMPS ve AA’nn radikal kopolimerizasyonu, önceki çalmada [22] bildirildii gibi çözücü olarak suda eit monomer oranlarnda gerçekletirildi [22] .2-Akrilamido-2-metilpropan sülfonik asit (AMPS), Lubrizol Corporation tarafndan tescillenmitir. Bu reaktif, hidrofilik, sülfonik asit akrilik monomerin anyonik polimerlerinin çeitli kimyasal özelliklerini deitirmek için kullanlabilir. 1970’lerde bu monomer kullanlarak akrilik elyaf üretimi için ilk patent açld. Günümüzde, su artma, petrol sahas, yap kimyasallar, tbbi uygulamalar için hidrojeller, kiisel bakm ürünleri, emülsiyon kaplamalar, yaptrclar ve deitirilmi reoloji dahil olmak üzere birçok alanda AMPS kullanmn içeren binlerce patent ve yayn bulunmaktadr. 2-AKRLAMDO-2-METLPROPAN AST BAZLI HDROJELLERN VE AIR METALLERN SÜLFONK ADSORPSYONU Hidrojeller, sv ve kat arasndaki ara durumlarndan dolay önemli özellikler gösterirler. Su ve sulu çözeltileri emme ve saklama yetenei, hidrojelleri ar metal iyonlarnn giderilmesi ve geri kazanm uygulamalarnda tek madde haline getirir. Bu çalmada, sulu çözeltilerden Pb (II) ve Cd (II) iyonlarn uzaklatrmak için tiyoüre, guanidin ve üre modifiye 2-akrilamido-2-metilpropan sülfonik asit (AMPS) monomerleri sentezlenmitir. Sonra radikal fotopolimerizasyon ile Poli (Tiyoüre ile modifiye edilmi AMPS / Akrilik Asit / N-Vinil-2-Pirolidon / 2-Hidroksietil Metakrilat) [P (AMPSTU / AAc / NVP / HEMA)] hidrojel, Poli (Guanidin ile modifiye edilmi AMPS / Akrilik Asit / N – Vinil-2-Pirolidon / 2-Hidroksietil Metakrilat) [P (AMPSG / AAc / NVP / HEMA)] hidrojel ve Poli (Üre modifiye AMPS / Akrilik Asit / N-Vinil-2-Pirolidon / 2-Hidroksietil Metakrilat) [P (AMPSU / AAc / NVP / HEMA) hidrojel hazrland.Monomerlerin ve hidrojellerin yaplar, Fourier Dönüümü Kzlötesi Spektroskopisi, Termal Gravimetrik Analiz ve Taramal Elektron Mikroskobu ile karakterize edildi. Hidrojellerin metal iyonlar üzerindeki adsorpsiyon kapasitesine pH, ilk metal iyon konsantrasyonu ve adsorpsiyon denge süresinin etkileri aratrlmtr. [83]. Hidrojeller, scaklk ve solvent kalitesi gibi harici bir etkiyle hacim ve / veya ekil deitirme kabiliyetine sahip akll ve yumuak malzemelerdir. Hidrojellerin bu özellikleri son yllarda büyük ilgi görmütür. Bununla birlikte, hidrojellerin mekanik dayanm düüktür. Ancak, d etkilere yava tepki verirler. Bu iki dezavantaj, hidrojellerin pratik uygulamasn snrlamaktadr. Bu doktora tezinin amac, hem iyi mekanik dayanma sahip hem de d uyaranlara annda cevap verebilen hidrojelleri sentezlemektir. Bu balamda, çok hzl yant veren ve yüksek mekanik mukavemete (sert) sahip jeller elde etmek için iki yöntem kullanlmtr. Tezin ilk bölümünde, iyonik monomer 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu (AMPS) ve çapraz balayc N, N’-metilenbis (akrilamid) (BAAm) ‘nin sulu çözeltilerde düük monomer konsantrasyonlar ve yüksek çapraz ba miktar reaksiyonlarnn, kistiklikten sonra sertleen mikrojel-agregat jellerin oluumuna yol açt gösterilmitir.Böylece, AMPS ve BAAm’nin serbest radikal çapraz balama reaksiyonlar, polimerizasyon çözücüsünün donma noktasnn altndaki scaklklarda gerçekletirilmitir. Kriyojel ad verilen farkl özelliklere sahip büyük gözenekli poli (AMPS) (PAMPS) hidrojeller sentezlenmitir. Kriyojelizasyon yöntemi iki açdan avantajlar salamtr: Elde edilen kriyojeller, süper hzl yantlarnn yan sra yüksek derecede sertlik göstermitir. Bu çalmann önemli bir ksm, donmu monomer solüsyonlarndan elde edilen kriyojellerin oluumu ve özellikleri arasndaki ilikiye odaklanmaktadr. Bu çalmada önce poli (2-akrilamido-2-metilpropan sülfonik asit) (p (AMPS)) tipi hidrojeller sentezlenmi ve daha sonra giemsa boyas (GS), metilen mavisi (MB) ve rodamin incelenmitir. 6G (R6G) boyarmaddelerle yüklü. Hidrojeller yaplarnda birçok su seven fonksiyonel gruba sahip olabildikleri için tp, biyomedikal, eczaclk, kozmetik, tarm ve çevre gibi pek çok alanda uygulama imkan bulmaktadr. GS, MB, R6G boyarmaddeler, genler, proteinler gibi maddelere balanma kabiliyetleri sayesinde kimya, biyoloji ve tpta pH ayarlama ve tayini, hastalklarn tehis ve tedavisi gibi uygulamalarda ve boya gerektiren endüstri uygulamalarnda sklkla kullanlmaktadr. ve DNA. Floresan özellikleri sayesinde çeitli optik uygulamalarda da kullanlabilirler. Sentezlenen ve boya yüklü hidrojellerin optik özellikleri, ultraviyole görünür bölge (UV-Vis) absorpsiyon spektrofotometresi ve floresans spektrofotometresi ile analiz edildi. Bu analizler sonucunda bu boyalarn optik özelliklerinin boya yüklü p (AMPS) hidrojellerde de gözlendii belirlendi.P (AMPS) hidrojellerin ve boya yüklü hidrojellerin elektriksel özellikleri, oda scaklnda iletkenlik ölçümleri ile incelenmitir. Elektriksel ve optik özelliklerin analizleri, boya yüklü p (AMPS) hidrojellerin tbbi uygulamalarda, LED, güne pili, optik filtre gibi optoelektronik uygulamalarda kullanlma potansiyeline sahip olduunu göstermitir. Bu çalmada öncelikle poli (2-akrilamido-2-metilpropan sülfonik asit) (p (AMPS)) tipi hidrojeller sentezlenmi ve daha sonra giemsa boyas (GS), metilen mavisi (MB) ve rodamin 6G (R6G) boyalar ile yüklenmitir. . Hidrojeller yaplarnda birçok su seven fonksiyonel gruba sahip olabildikleri için tp, biyomedikal, eczaclk, kozmetik, tarm ve çevre gibi pek çok alanda uygulama imkan bulmaktadr. GS, MB, R6G boyarmaddeler, genler, proteinler gibi maddelere balanma kabiliyetleri sayesinde kimya, biyoloji ve tpta pH ayarlama ve tayini, hastalklarn tehis ve tedavisi gibi uygulamalarda ve boya gerektiren endüstri uygulamalarnda sklkla kullanlmaktadr. ve DNA. Floresan özellikleri sayesinde çeitli optik uygulamalarda da kullanlabilirler. Sentezlenen ve boya yüklü hidrojellerin optik özellikleri, ultraviyole görünür bölge (UV-Vis) absorpsiyon spektrofotometresi ve floresans spektrofotometresi ile analiz edildi. Bu analizler sonucunda bu boyalarn optik özelliklerinin boya yüklü p (AMPS) hidrojellerde de gözlendii belirlendi. P (AMPS) hidrojellerin ve boya yüklü hidrojellerin elektriksel özellikleri, oda scaklnda iletkenlik ölçümleri ile incelenmitir. Elektriksel ve optik özelliklerin analizleri, boya yüklü p (AMPS) hidrojellerin tbbi uygulamalarda, LED, güne pili, optik filtre gibi optoelektronik uygulamalarda kullanlma potansiyeline sahip olduunu göstermitir. STABLZASYON / DAITIM PERFORMANSI ACUMER® 2000 polimer salamak için tasarlanmtr. kalsiyum fosfatn üstün stabilizasyonu. Ayrca çinko ve kalsiyum karbonatn mükemmel stabilizasyonunu gösterir. Ek olarak ACUMER® 2000, silt ve yaygn olarak karlalan inorganik partiküllerin askda tutulmas ve s transfer yüzeylerine çökelmesinin önlenmesinde güçlü bir datcdr. UYGULAMALAR Soutma suyu artm için Stabilizatör / kireç önleyici çökelme polimeri Tüm tamamlayc özelliklerinden yararlanarak ve stabilizatör, antiscalent ve dispersan olarak yüksek performansl ACUMER® 2000, özellikle soutma suyu artma programlarnn çou için tavsiye edilir: Fosfat bazl programlar, Çinko bazl programlar. ACUMER® 2000’in metal yüzeylerde korozyon inhibitörlerine yardmc olduu tüm organik programlar gelitirildi. ACUMER® 2000, korozyonun yan sra kireçlenmeyi önlemede dier katk maddeleri ile sinerjik bir etkiye sahiptir. ACUMER® 2000’N FAYDALARI Mükemmel termal ve kimyasal stabilite sergiler ve geni bir scaklk ve pH aralnda kullanlabilir ve saklanabilir. Bu stabilite, formülatörün maksimum raf ömrü için yüksek pH’da tek paketli muameleler üretmesini salar.Piyasada bulunan polimerlerin çou sistemde çözünür demir varlnda devre d brakldnda üstün demir tolerans salar Maksimum s transferi ve korozyon direnci için yüzeyleri temiz tutar. KMYA VE EYLEM EKL ACUMER® 2000 kopolimer iki fonksiyonel grubu birletirir: güçlü asit (sülfonat) ve zayf asit (karboksilat), aadaki farkl mekanizmalarla optimum kireç önleyici / datc etkinlii salar: Düük çözünürlüklü inorganik tuzlarn çökelmesini azaltan eik etkisi ile çözünürlük art. Büyüyen inorganik tuz kristalini deforme eden kristal modifikasyonu. yüzeylere iyi yapmayan ve temizlik ilemleri srasnda kolayca çkarlabilen küçük, düzensiz, kolayca krlan kristaller verir. Çöken kristallerin veya dier inorganik partiküllerin topaklanmasn ve yüzeylerde birikmesini önleyen dispersiyon aktivitesi. Sülfonat gruplar, partiküller üzerine adsorbe edilen karboksilat gruplarnn negatif yükünü arttrr ve daha sonra partiküller arasndaki itmeyi güçlendirerek daha büyük partiküller halinde toplanmalarn önler, bu da tüp yüzeylerinde ve düük ak alanlarnda çökelebilir ve birikebilir TEST YÖNTEM ACUMER® 2000 Hach poliakrilat test kiti ile kullanm konsantrasyonunda analiz edilebilir. Bu kit, gelitirilmi patentli bir yöntem kullanr GÜVENL KULLANIM BLGS Dikkat: – Temas, göz tahriine ve hafif cilt tahriine neden olabilir. lk yardm önlemleri Deri ile temas: Cildi sabun ve suyla iyice ykayn. Kirlenmi giysileri çkarn ve tekrar giymeden önce ykayn Gözlerle temasa geçin: gözleri en az 15 dakika bol su ile ykayn ve ardndan bir doktor çarn Yutulmas halinde: kazazedenin bilinci açksa, kazazedenin su içmesini salayarak svy seyreltin ve ardndan afizikçiyi arayn . Kurban bilinçsiz ise, derhal bir doktor çarn. Bilinçsiz bir kiiye asla içecek bir ey vermeyin. Toksisite: – Akut oral (LD50) sçanlar:> 5g / kg ACUMER TM 2000, kireç önleyici / korozyon önleyici soutma suyu artma formülasyonlar için mükemmel bir fosfat ve çinko stabilizatörü ve inorganik partikül datcsdr. ACUMER 2000 kopolimeri iki fonksiyonel grubu birletirir: güçlü asit (sülfonat) ve zayf asit (karboksilat), aadaki farkl mekanizmalarla optimum kireç önleyici / datc etkinlii salar: Düük çözünürlüklü inorganik tuzlarn çökelmesini azaltan eik etkisi ile çözünürlük art. Büyüyen inorganik tuz kristalini deforme eden kristal modifikasyonu. yüzeylere iyi yapmayan ve temizlik ilemleri srasnda kolayca çkarlabilen küçük, düzensiz, kolayca krlan kristaller verir. Çöken kristallerin veya dier inorganik partiküllerin topaklanmasn ve yüzeylerde birikmesini önleyen dispersiyon aktivitesi. Sülfonat gruplar, partiküller üzerine adsorbe edilen karboksilat gruplarnn negatif yükünü arttrr ve daha sonra partiküller arasndaki itmeyi güçlendirerek, bunlarn daha büyük partiküller halinde toplanmasn önler, bu da tüp yüzeylerinde ve düük ak alanlarnda çökelebilir.ACUMER 2000 polimer, üstün kalsiyum fosfat stabilizasyonu salamak için tasarlanmtr. Ayrca çinko ve kalsiyum karbonatn mükemmel stabilizasyonunu gösterir. Ayrca ACUMER 2000, silt ve yaygn olarak karlalan inorganik partiküllerin askda tutulmas ve s transfer yüzeylerine yerlemesinin önlenmesinde güçlü bir datcdr. Uygulamalar Stabilizatör / Soutma suyu artm için kireç önleyici çökelme polimeri Tüm tamamlayc özelliklerinden ve yüksek stabilizatör, kireç önleyici ve datc olarak performans, ACUMER 2000 özellikle soutma suyu artma programlarnn çounluu için tavsiye edilir: Fosfat bazl programlar Çinko bazl programlar Gelimi Tüm Organik programlar ACUMER 2000’in fosfonatlar gibi metal üzerinde korozyon inhibitörlerine yardmc olduu ACUMER 2000’in Faydalar Mükemmel termal ve kimyasal kararllk sergiler ve geni bir scaklk ve pH aralnda kullanlabilir ve saklanabilir. Bu stabilite, formülatörün maksimum raf ömrü için yüksek pH’da tek paketli muameleler üretmesini salar. Hipoklorit varlnda olaanüstü stabilite sergiler. Piyasada bulunan polimerlerin çou sistemde çözünür demir varlnda devre d brakldnda üstün demir tolerans salar. Maksimum s transferi ve korozyon direnci için yüzeyleri temiz tutar. ACUMER, en az üç mekanizma araclyla kireç önleyici performans optimize etmek için 2000 civarnda seçilmi bir moleküler arla sahip düük moleküler arlkl bir poliakrilattr: • Eik etkisiyle çözünürlük art, düük çözünürlüklü inorganik tuzlar (özellikle kalsiyum karbonat). • Büyüyen inorganik tuz kristalini deforme ederek yüzeylere iyi yapmayan ve temizlik ilemleri srasnda kolayca çkarlabilen küçük, düzensiz, kolayca krlan kristaller veren kristal modifikasyonu. • Çökelmi kristallerin veya dier inorganik partiküllerin topaklamasn ve yüzeylerde birikmesini önleyen dispersiyon aktivitesi. ACUMER 2000 kopolimeri iki fonksiyonel grubu birletirir: aadakiler araclyla optimum kireç önleyici / dispersan verimlilii salayan güçlü asit (sülfonat) ve zayf asit (karboksilat) farkl mekanizmalar: Düük çözünürlüe sahip inorganik tuzlarn çökelmesini azaltan eik etkisiyle çözünürlük artrma. Büyüyen inorganik tuz kristalini deforme ederek yüzeylere iyi yapmayan ve temizlik ilemleri srasnda kolayca çkarlabilen küçük, düzensiz, kolayca krlan kristaller veren kristal modifikasyonu . Çöken kristallerin veya dier inorganik partiküllerin topaklanmasn ve yüzeylerde birikmesini önleyen datma aktivitesi. Sülfonat gruplar, partiküllere adsorbe edilen karboksilat gruplarnn negatif yükünü arttrr ve daha sonra partiküller arasndaki itmeyi güçlendirerek, tüp yüzeylerinde ve düük akl alanlarda çökelebilecek ve birikebilecek daha büyük partiküller halinde birikmelerini önler ACUMER 2000 polimer tasarlanmtr. kalsiyum fosfatn üstün stabilizasyonunu salamak için. Ayrca çinko ve kalsiyum karbonatn mükemmel stabilizasyonunu gösterir.Ayrca ACUMER 2000, silt ve yaygn olarak karlalan inorganik partiküllerin askda tutulmas ve s transfer yüzeylerine yerlemesinin önlenmesinde güçlü bir datcdr.Tüm tamamlayc özelliklerinden ve stabilizatör, kireç önleyici ve dispersan olarak yüksek performansndan faydalanan ACUMER 2000 özellikle soutma suyu artma programlarnn çounluu için tavsiye edilir: Fosfat bazl programlar Çinko bazl programlar Gelimi Tüm Organik programlar ACUMER 2000, metal yüzeyler üzerinde fosfonatlar gibi korozyon inhibitörlerine yardmc olur. ACUMER 2000 ile sinerjik bir etkiye sahiptir. kireç ve korozyonu önlemede dier katk maddeleri ACUMER 2000’in Faydalar Mükemmel termal ve kimyasal kararllk sergiler ve geni bir scaklk ve pH aralnda kullanlabilir ve saklanabilir. Bu stabilite, formülatörün maksimum raf ömrü için tek paketli muameleler üretmesini salar. Piyasada bulunan polimerlerin çou sistemde çözünür demir varlnda devre d brakldnda üstün demir tolerans salar. Maksimum s transferi ve korozyon için yüzeyleri temiz tutar. Test Yöntemi zlenebilir bir polimer gerekiyorsa OPTIDOSE TM 2000, müdahale olmakszn 0,5 ppm – 15 ppm alglama yetenei ile ACUMER 2000 ile ayn performans sunar IR-2000 Karboksilat-sülfonat Kopolimer Datc Özellikler: IR-2000 karboksilat -sülfonat kopolimeri, akrilik-akrilat-sülfosatn kopolimeridir, kalsiyum fosfat, kalsiyum karbonat ve dier inorganik mineraller için iyi bir ölçek inhibitörüdür. IR-2000 karboksilat-sülfonat kopolimer datc, fosfat içeren formülde kalsiyum fosfat etkili bir ekilde stabilize edebilir. Ayrca çinko içeren bir formülde çinkoyu stabilize edebilir. IR-2000, inorganik mikropartikülleri pH etkisi olmadan databilir. IR-2000 karboksilat-sülfonat kopolimeri, tüm organik su artma formüllerinde etkili bir datcdr, mineraller için bir datc, kalsiyum fosfat için bir stabilizatör olarak kullanlabilir. (ACUMER 2000’e benzer) ACUMER 2000, soutma suyu artmalarnda kullanlmas tavsiye edilir. Anti-korozyon / anti-korozyon için mükemmel bir çinko ve fosfat stabilizatörü ve inorganik partikül datcsdr Acumer 2000’in Avantajlar Çinko, fosfat ve fosfonatlar gibi korozyon inhibitörlerini stabilize eder Is transfer yüzeylerinde tortu oluumunu engeller norganik ve tortulamay önler kirlenme Kalsiyum, demir tuzlar ve magnezyumun çökelmesini engeller Dinamik test, sistemi zorlamak ve ölçeklenme eilimini arttrmak için 132 ° F’de Örnek 7’nin yöntemi kullanlarak gerçekletirildi. Sonuçlar ekil 2’de gösterilmektedir. 4; “Yeni polimer”, Örnek 1’dekidir; PMA, BioLab’dan BELCLENE 200’dür. AA / AMPS, Rohm and Haas’tan ACUMER 2000’dir. Yeni polimerin, çökelme olumaya balamadan önce, daha yüksek bir konsantrasyon döngüsüne kadar çözeltide daha fazla kalsiyum tutabildii görülebilir. Dinamik test, 104 ° F’de Örnek 7 yöntemi kullanlarak gerçekletirildi. sistem içinde demirli demiri stabilize etmek için yeni polimer.Örnek 1’in çok ilevli polimeri (“yeni polimer”) BELCLENE 200 PMA homopolimeri, ACUMER 2000 AA / AMPS kopolimeri ve fosfonat ile karlatrld. Sonuçlar ekil 2’de gösterilmektedir. 6. Fosfonat ve PMA’nn test boyunca herhangi bir demirli demiri sabitleyemedii görülebilir. AA / AMPS kopolimeri, demirli demiri, kalsiyum karbonatn çökelmesi nedeniyle baarsz olduu yaklak 2,4 döngü konsantrasyonuna kadar stabilize edebildi. Yeni polimer, ferröz demir konsantrasyonlarn yaklak 4.0 döngü konsantrasyona kadar koruyarak çok daha iyi performans gösterdi. Dinamik test, yeni polimerin içerisindeki orto-fosfat stabilize etme yeteneini göstermek için 110 ° F’de Örnek 7 yöntemi kullanlarak gerçekletirildi. sistem. Örnek 1 polimeri (“yeni polimer”) BELCLENE 200 PMA homopolimer ve ACUMER 2000 AA / AMPS kopolimer ile karlatrld. Sonuçlar ekil 2’de gösterilmektedir. 7. Üç sisteme de 3.0 mg / L orto-fosfat beslemesi ayn anda dahil edildi. Örnek 1 ve AA / AMPS ilemlerinin polimerinin amaçlanan 3.0 mg / L PO4’ü test boyunca çözelti içinde elde edip koruyabildiine, ancak PMA’nn olmadna dikkat edin. PMA yalnzca 1,75 mg / L orto-fosfat elde edebildi, bu da testin sonunda kademeli olarak 1,25 mg / L’ye dütü. Kalan orto-fosfat kalsiyum fosfat olarak çökeliyordu. Bu çökeltilmi kalsiyum fosfatn büyük bir yüzdesi, bir sonraki örnekte gösterilecek olan s eanjörlerinde ölçek olarak birikmitir. Dinamik test, yeni polimerin aadakileri yapabildiini göstermek için 110 ° F’de Örnek 7 yöntemi kullanlarak gerçekletirilmitir. çubuklarn temizliini koruyun. Örnek 1 polimeri BELCLENE 200 PMA homopolimeri ve ACUMER 2000 AA / AMPS kopolimeri ile karlatrlmtr. Tüketici 2000 Serisi (Kireç Önleyici) Deiyonize su% 34 TT50 (Tolyltriazole% 50 Aktif)% 1 Belcene 494 (% 50 Aktif) 10 % Dequest 2010 (% 55 Aktifler)% 5 Acumer 2000 (% 50 Aktifler)% 5 KOH (% 45 Aktifler)% 5 5,0 pH salar Acumer 2000® 0,6 – 6,0 tortu kontrol ajan sülfonatl akrilat kopolimer Acumer 2000 2,5 tortu kontrol ajan sülfonatl akrilat kopolimer Acumer2000 Acumer 2000 Serisi Polimer Elektrolit Membranlar Elektron In lemiyle Aktive Edilmi PVDF ve ETFE Üzerindeki 2-Akrilamido-2-Metilpropan Sülfonik Asit ve Akrilik Asidin A Kopolimerizasyonu ile Hazrlanan Akrilamid / 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu bazl hidrojeller: sentez ve karakterizasyon Akrilamid (AAm) / 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu (AMPS) bazl hidrojellerin oluum mekanizmas ve ime davran arasndaki ilikiler incelenmitir. Hidrojeller, çapraz balayc olarak N, N0 metilenbis (akrilamid) (BAAm) varlnda 40 ° C’de AAm ve AMPS’nin serbest radikal çapraz balama kopolimerizasyonu ile hazrland. Hem çapraz balayc oran (çapraz balaycnn monomere mol oran) hem de balangç ​​monomer konsantrasyonu srasyla 1/82 ve 0.700 M’de sabitlenirken, monomer karmndaki AMPS içerii% 0 ila% 100 mol arasnda deimitir.Kopolimer bileiminin monomer besleme bileimine eit olduu bulundu, bu da monomer birimlerinin hidrojellerin a zincirleri boyunca rastgele daldn gösterir. Monomer dönüümüne kar zaman geçmilerinin yan sra polimerizasyon srasnda jelin büyüme hznn, ilk monomer karmndaki AMPS miktarndan bamsz olduu bulundu. Reaksiyon sisteminin jel noktasnda iki faza ayrld ve jelin heterojen bir sistemde büyüdüü gösterilmitir. Nihai hidrojellerin denge ime derecesi, yaklak% 10 mol AMPS’de bir platoya ulalana kadar artan AMPS içerii ile artar. Mol% 10 ila 30 AMPS arasnda, suda ve sulu NaCl çözeltilerinde ime denge jeli hidrojellerin iyonik grup içeriinden bamszd. AMPS içeriindeki bu deerin ötesinde daha fazla art, jel imesini sürekli olarak% 100 mol’e kadar arttrd. Kar iyon younlamasna dayanan polielektrolit teorileri, AAm / AMPS hidrojellerinin gözlenen ime davrann açklayamaz. Hidrojellerin sudaki ve sulu NaCl çözeltilerindeki ime erileri, Flory-Rehner ime dengesi teorisi ile, etkili yük younluunun ayarlanabilir bir parametre olarak alnd ideal Donnan dengesini de içeren baarl bir ekilde yeniden üretildi. Oluum mekanizmas ve arasndaki ilikiler. akrilamid (AAm) / 2-akrilamido-2-metilpropan sülfonik asit sodyum tuzu (AMPS) bazl hidrojellerin ime davran incelenmitir. Hidrojeller, çapraz balayc olarak N, N′-metilenbis (akrilamid) (BAAm) varlnda 40 ° C’de AAm ve AMPS’nin serbest radikal çapraz balanma kopolimerizasyonu ile hazrland. Hem çapraz balayc oran (çapraz balaycnn monomere mol oran) hem de balangç ​​monomer konsantrasyonu srasyla 1/82 ve 0.700 M’de sabitlenirken, monomer karmndaki AMPS içerii% 0 ila% 100 mol arasnda deimitir. Kopolimer bileiminin monomer besleme bileimine eit olduu bulundu, bu da monomer birimlerinin hidrojellerin a zincirleri boyunca rastgele daldn gösterir. Monomer dönüümüne kar zaman geçmilerinin yan sra polimerizasyon srasnda jelin büyüme hznn, ilk monomer karmndaki AMPS miktarndan bamsz olduu bulundu.

Explore: