AGE
Allyl Glycidyl Ether 106-92-3
Description and uses: For applications requiring dual functionality, allyl or epoxy.
Performance modifier in elastomers, epoxies, adhesives and fibers.
Raw material for polymer and silane coupling agent (epoxy silane coupling agent in paints) Modifier use Reactive intermediate for coatings, sizing/finishing agent for fiber glass, Water treatment, Silicon products.
Allyl glycidyl ether is an organic compound used in adhesives and sealants and as a monomer for polymerization reactions.
It is formally the condensation product of allyl alcohol and glycidol via an ether linkage.
Because it contains both an alkene and an epoxide group, either group can be reacted selectively to yield a product where the other functional group remains intact for future reactions.
Synonym: allyl 2,3-epoxypropyl ether
EC / List no.: 203-442-4
CAS no.: 106-92-3
Mol. formula: C6H10O2
Product group Speciality
Synonym :allyl 2,3-epoxypropyl ether
Statistics number 2910-90-00(-80)
Cas number: 106-92-3
Cus number:10350
EC number:203-442-4
RID/ADR number:3
UN number:2219
PHYSICAL PROPERTIES
Molecular weight: 114.1
Boiling point °C (760 mmHg): 153.9
Boiling point °C (20 mmHg): 55
Flash point (COC,°C): 57.2
Flash point (Abel-Pensky,°C):49.5
Viscosity (CPS at 20°C): 1.20
Viscosity (CPS at 30°C): 1.02
Specific gravity (20°C4°C): 0.970
Refractive index (Nd30): 1.4304
Freezing point (classification in -°C): 100
106-92-3
Name: Allyl glycidyl ether
CAS: 106-92-3
Molecular Formula: C6H10O2
Molecular Weight: 114.142
CAS 106-92-3
106-92-3 – Names and Identifiers
Name Allyl glycidyl ether
Synonyms Allyl 2,3-epoxypropyl ether
1-Allyloxy-2,3-epoxypropane
AGE
Allylglycidyl ether
2-[(prop-2-en-1-yloxy)methyl]oxirane
(2R)-2-[(prop-2-en-1-yloxy)methyl]oxirane
(2S)-2-[(prop-2-en-1-yloxy)methyl]oxirane
CAS 106-92-3
EINECS 203-442-4
106-92-3 – Physico-chemical Properties
1,2-Epoxy-3-allyloxypropane
1-(Allyloxy)-2,3-epoxypropane
1-Allilossi-2,3 epossipropano
1-Allyloxy-2,3-epoxy-propaan
1-Allyloxy-2,3-epoxypropan
2,3-Epoxypropyl-1-allyl ether
AGE
Allil-glicidil-etere
Allyl 2,3-epoxypropyl ether
Allyl 2,3-epoxypropyl ether
allyl 2,3-epoxypropyl ether
ALLYL GLYCIDYL ETHER
Allyl glycidyl ether
allyl glycidyl ether
allyl glycidyl ether; allyl 2,3-epoxypropyl ether; prop-2-en-1-yl 2,3-epoxypropyl ether
Allylglycidaether
Ether, allyl 2,3-epoxypropyl
Glycidyl allyl ether
Oxirane, ((2-propenyloxy)methyl)-
Oxirane, 2-((2-propen-1-yloxy)methyl)-
Oxyde d’allyle et de glycidyle
prop-2-en-1-yl 2,3-epoxypropyl ether
Propane, 1-(allyloxy)-2,3-epoxy-
Propane, 1-(allyloxy)-2,3-epoxy- (8CI)
1-aliloksi-2,3-epoksipropan (sl)
1-aliloxi-2,3-epoxipropano (pt)
1-allilossi-2,3-epossipropano (it)
1-allyloksy-2,3-epoksypropan (no)
1-allyloxi-2,3-epoxipropan (sv)
1-allyloxy-2,3-epoxy-propaan (nl)
1-allyloxy-2,3-epoxy-propan (da)
1-Allyloxy-2,3-epoxy-propan (de)
1-allyloxy-2,3-epoxypropylether (cs)
1-Allyylioksi-2,3-epoksipropaani (fi)
2,3-epoxipropil éter (pt)
3-(2,3-epoksypropoksy)propen (pl)
[(alyloxy)metyl]oxirán (sk)
alil 2,3-epoxipropil eter (ro)
alil glicidil eter (ro)
alil glicidil eter (sl)
alil-2,3-epoksipropil-eter (hr)
alil-2,3-epoksipropileteris (lt)
alil-2,3-epoksipropilēteris (lv)
alil-2,3-epoxipropileter-1 (es)
alil-glicidil-eter (hr)
alilglicidileteris (lt)
alilglicidilēteris (lv)
allil-2,3-epoxipropil-éter (hu)
allil-glicidil-etere (it)
allil-glicidil-éter (hu)
allyglycidylether (cs)
allylglycidyleter (no)
allylglycidyleter (sv)
allylglycidylether (da)
Allylglycidylether (de)
allylglycidylether (nl)
Allyyliglysidyylieetteri (fi)
allüül-2,3-epoksüpropüüleeter (et)
Allüülglütsidüüleeter (et)
alyl(oxiranylmetyl)éter (sk)
eter allilowo-glicydowy (pl)
oxyde d’allyle et de 2,3-époxypropane (fr)
oxyde d’allyle et de glycidyle (fr)
oxyde d’allyle et de glycidyle; oxyde d’allyle et de 2,3-époxypropyle; oxyde de prop-2-én-1-yle et de 2,3-époxypropyle (fr)
prop-2-een-1-üül-2,3-epoksüpropüüleeter (et)
prop-2-en-1-il 2,3-epoksipropil eter (sl)
prop-2-en-1-il 2,3-epoxipropil eter (ro)
prop-2-en-1-il-2,3-epoksipropil-eter (hr)
prop-2-en-1-il-2,3-epoksipropileteris (lt)
Prop-2-en-1-yl 2,3-epoxypropyl ether (de)
prop-2-en-1-yl-2,3-epoxypropylether (cs)
prop-2-eno-1-il (pt)
prop-2-én-1-il-2,3-epoxipropil-éter (hu)
prop-2-én-1-yl(2,3-epoxypropyl)éter (sk)
propēn-2-il-1 2,3-epoksipropilēteris (lv)
éter alilglicidílico (pt)
éter de alilo y de glicidilo (es)
αλλυλο-2,3-εποξυπροπυλαιθέρας αλλυλογλυκιδυλαιθέρας (el)
алил глицидилов етер (bg)
алил-2,3-епоксипропилов етер (bg)
проп-2-ен-1-ил 2,3- епоксипропилов етер (bg)
CAS names
Oxirane, 2-[(2-propen-1-yloxy)methyl]-
IUPAC names
2-(prop-2-enoxymethyl)oxirane
2-[(allyloxy) methyl] oxirane
2-[(allyloxy) methyl]oxirane
2-[(allyloxy)methyl]oxirane
2-[(prop-2-en-1-yloxy)methyl]oxirane
Allyl 2,3-epoxypropyl ether
allyl 2,3-epoxypropyl ether
Allyl 2,3-epoxypropyl ether
allyl 2,3-epoxypropyl ether
ALLYL GLYCIDYL ETHER
Allyl Glycidyl Ether
Allyl glycidyl ether
allyl glycidyl ether
Allyl Glycidyl Ether
Trade names
AGE
Allyl glycidyl ether-S
Epiol A
Neoallyl G
Polymerization
As a bifunctional compound, the alkene group or the epoxide group can be reacted selectively to yield a product where the other functional group remains intact for future reactions.
For example, either one of them could be used for linear polymerization, and then the other used for cross-linking.
Radical polymerization of the propylene portion in the presence of methyl acrylate yields a block copolymer with a high epoxide content.
Similarly, it is can be used in the production of polyvinylcaprolactam as a chain transfer agent.
Nucleophilic polymerization of the epoxide groups gives a material that has the same backbone as polyethylene glycol, with allyl-ether side chains.
The additional Lewis basic ether sites alter ion transport in the polymer and also affect the transient inter-chain crosslinking and glass transition temperature in the presence of metal ions.
These properties suggest that the material may have applications as an alternative electrolyte for lithium-ion batteries.
The alkenes can be elaborated into short polyethylene-glycol oligomers to further increase the ion-binding ability and enhance the resulting material properties.
Block copolymers with ethylene oxide form micelles, which could be useful for encapsulating other molecules as part of a drug delivery system.
The alkenes of these macromolecular structures can also be cross-linked via radical polymerization.
Lewis-acid-catalyzed co-polymerisation with carbon dioxide likewise gives a polycarbonate material with allyl side chains that can be further elaborated.
Hydrosilylation
Rather than polymerization, the alkene group can undergo a hydrosilylation reaction with siloxanes in the presence of chloroplatinic acid as catalyst.
Like the polymerization reactions, this reaction also leaves the epoxide intact.
By this reaction, allyl glycidyl ether finds use as an intermediate in the production of silane coatings for electrical applications.