CAPROLACTONE

Table of Contents

CAPROLACTONE

CAPROLACTONE;

 


EC NUMBER; 207-938-1

 


CAS NUMBER; 502-44-3

 

SYNONYM: 2-Oxepanone, 6-Caprolactone monomer, 6-Hexanolactone;6-Hexanolactone; Epsilon-caprolactone;oxepan-2-one; 2-Oxepanone; CAPROLACTONE; 502-44-3; Hexan-6-olide;Hexamethylene oxide, 2-oxo-; POLYCAPROLACTONE; 6-Caprolactone monomer; 2-oxohexamethylene oxide; epsilon-Hexalactone; epsilon-Kaprolakton [Czech]; HSDB 5670; EINECS; 207-938-1; 6-hydroxyhexanoic acid, epsilon-lactone; BRN 0106919; CHEMBL373123; Hexanoic acid, 6-hydroxy-, epsilon-lactone; 24980-41-4; CHEBI:17915; PAPBSGBWRJIAAV-UHFFFAOYSA-N; AK164169; 80137-66-2; W-109083; epsilon-Kaprolakton; Caprolactam homopolymer; Aquaplast, caprolactone; 2-Oxepanone, homopolymer; UNII-56RE988L1R; 6-Hexanalactone; epsilon caprolactone; ECE; .epsilon.-Kaprolakton; PubChem15924; ACMC-1B0GI; DSSTox_CID_7159; bmse000493; Polycaprolactone (Med MW); AC1L1V4E; epsilon-Caprolactone, 97%; DSSTox_RID_78329; DSSTox_GSID_27159; SCHEMBL10850; 5-17-09-00034 (Beilstein Handbook Reference); .epsilon.-Caprolactone monomer; DTXSID4027159; CTK5E7505; Hexanoic acid, .epsilon.-lactone; MolPort-001-787-811; 56RE988L1R; BB_SC-6787; ZINC388417; BB_SC-06787; epsilon-Caprolactone, 99% 100g; Hexanoic acid, 6-hydroxy-, lactone; Tox21_200445; BBL011394; BDBM50167993; c0059; MFCD00003267;MFCD00084404; STL146497; AKOS005721108; FCH1117904; MCULE-3051096014; NCGC00248619-01; NCGC00257999-01; AN-21430; AS-14738; CAS-502-44-3; CC-27497; CJ-03243; HE019457; HE261378; HE346044; KB-45509; LS-75330; M374; SC-93827; ZB011499; DB-051739; FT; 0625678; Hexanoic acid, 6-hydroxy-, .epsilon.-lactone; 2198-EP2277565A2; 2198-EP2277566A2; 2198-EP2277567A1; 2198-EP2277568A2; 2198-EP2277569A2; 2198-EP2277570A2; 2198-EP2292280A1; 2198-EP2292630A1; 2198-EP2295399A2; 2198-EP2295412A1; 2198-EP2295413A1; 2198-EP2308872A1; 2198-EP2311837A1; 2198-EP2316829A1; 2198-EP2316834A1; C01880; 24112-EP2295439A1; 24112-EP2308865A1; 24112-EP2311825A1; 24112-EP2314590A1; 24112-EP2374895A1; A828019; C-29926; SR-01000944724; SR-01000944724-1; F0001-1311; InChI=1/C6H10O2/c7-6-4-2-1-3-5-8-6/h1-5H; 2-oxepanone, homopolymer, minimum number average molecular weight (in amu) 52,000; 1227479-63-1; 1351686-25-3; 146322-77-2; 52004-64-5; 67184-99-0; 868068-85-3 ; 6-Hexanolide; hexano-6-lactone; 1,6-Hexanolide; E-Caprolactone; 1-Oxa-2-oxocycloheptane; 6-Hydroxyhexanoic acid lactone; epsilon-Caprolactone monomer; 2-Oxacycloheptanone; Hexanoic acid, epsilon-lactone; Placcel M;.epsilon.-Caprolactone; 2-Oxepanone, 6-Hydroxycaproic acid lactone; Poly(?-caprolactone)Block copolymerBiodegradableMicellesShape-memory effectPolymer networkPrecursor; polycaprolactone; 2-Oxepanone, 6-Hexanolactone; 1,6-Hexanolide; 1-Oxa-2-oxocycloheptane; 2-Oxacycloheptanone; 2-Oxepanone; 2-Oxohexamethylene oxide; 6-Hexanolactone; 6-Hexanolide; 6-Hydroxyhexanoic acid lactone; 6-Hydroxyhexanoic acid, epsilon-lactone; Caprolactone; epsilon-Caprolactone; epsilon-Caprolactone monomer; Hexan-6-olide; Hexanoic acid, epsilon-lactone; 6-Hydroxyhexanoate lactone; 6-Hydroxyhexanoate, epsilon-lactone; Hexanoate, epsilon-lactone; epsilon-Captolactamium hydrogen sulfate; degradation, hydrolysis, poly(?-caprolactone), macromolecular design; : ?-caprolactone, ?-butyrolactone, hydrolytic degradation, hydrocortisone, drug-delivery systems; ?-Hexalactone; ?-Hexanolactone; poly-[epsilon]-caprolactone; Cellulose laurate, Poly (?-caprolactone), Blends, Thermal behaviors, Miscibility; Poly(L-lactic acid-co-?-caprolactone); Poly(L-lactide-co-?-caprolactone); Poly[oxy(1-methyl-2-oxoethylene)/oxy(1-oxohexane-1,6-diyl)]; Poly[(3S,6S)-3,6-dimethyl-1,4-dioxane^2,5-dione/2-oxepanone]; -(C3H4O2)n-(C6H10O2)m–O-CO-CH(CH3)-O-CO-(CH2)5-;; Oxepan-2-one; Advanced manufacturing technologies, Scaffolds, Biological analysis and testing; Bioactive glass, poly(?-caprolactone), nanofibres, mechanical properties, skin tissue engineering; 6-Hexanolactone; 2-Oxepanone; Triflates Poly(?-caprolactone) 6-Hydroxyhexanoic acid Water ; METIS-106358Bock copolymers-caprolactoneIR-71424stannous octoateL-lactideRing-opening polymerization; 2-Oxepanone, 6-Caprolactone monomer, 6-Hexanolactone;6-Hexanolactone; Epsilon-caprolactone;oxepan-2-one; 2-Oxepanone; CAPROLACTONE; 502-44-3; Hexan-6-olide; Hexamethylene oxide, 2-oxo-; POLYCAPROLACTONE; 6-Caprolactone monomer; 2-oxohexamethylene oxide; epsilon-Hexalactone; epsilon-Kaprolakton [Czech]; HSDB 5670; EINECS; 207-938-1; 6-hydroxyhexanoic acid, epsilon-lactone; BRN 0106919; CHEMBL373123; Hexanoic acid, 6-hydroxy-, epsilon-lactone; 24980-41-4; CHEBI:17915; PAPBSGBWRJIAAV-UHFFFAOYSA-N; AK164169; 80137-66-2; W-109083; epsilon-Kaprolakton; Caprolactam homopolymer; Aquaplast, caprolactone; 2-Oxepanone, homopolymer; UNII-56RE988L1R; 6-Hexanalactone; epsilon caprolactone; ECE; .epsilon.-Kaprolakton; PubChem15924; ACMC-1B0GI; DSSTox_CID_7159; bmse000493; Polycaprolactone (Med MW); AC1L1V4E; epsilon-Caprolactone, 97%; DSSTox_RID_78329; DSSTox_GSID_27159; SCHEMBL10850; 5-17-09-00034 (Beilstein Handbook Reference); .epsilon.-Caprolactone monomer; DTXSID4027159; CTK5E7505; Hexanoic acid, .epsilon.-lactone; MolPort-001-787-811; 56RE988L1R; BB_SC-6787; ZINC388417; BB_SC-06787; epsilon-Caprolactone, 99% 100g; Hexanoic acid, 6-hydroxy-, lactone; Tox21_200445; BBL011394; BDBM50167993; c0059; MFCD00003267;MFCD00084404; STL146497; AKOS005721108; FCH1117904; MCULE-3051096014; NCGC00248619-01; NCGC00257999-01; AN-21430; AS-14738; CAS-502-44-3; CC-27497; CJ-03243; HE019457; HE261378; HE346044; KB-45509; LS-75330; M374; SC-93827; ZB011499; DB-051739; FT; 0625678; Hexanoic acid, 6-hydroxy-, .epsilon.-lactone; 2198-EP2277565A2; 2198-EP2277566A2; 2198-EP2277567A1; 2198-EP2277568A2; 2198-EP2277569A2; 2198-EP2277570A2; 2198-EP2292280A1; 2198-EP2292630A1; 2198-EP2295399A2; 2198-EP2295412A1; 2198-EP2295413A1; 2198-EP2308872A1; 2198-EP2311837A1; 2198-EP2316829A1; 2198-EP2316834A1; C01880; 24112-EP2295439A1; 24112-EP2308865A1; 24112-EP2311825A1; 24112-EP2314590A1; 24112-EP2374895A1; A828019; C-29926; SR-01000944724; SR-01000944724-1; F0001-1311; InChI=1/C6H10O2/c7-6-4-2-1-3-5-8-6/h1-5H; 2-oxepanone, homopolymer, minimum number average molecular weight (in amu) 52,000; 1227479-63-1; 1351686-25-3; 146322-77-2; 52004-64-5; 67184-99-0; 868068-85-3 ; 6-Hexanolide; hexano-6-lactone; 1,6-Hexanolide; E-Caprolactone; 1-Oxa-2-oxocycloheptane; 6-Hydroxyhexanoic acid lactone; epsilon-Caprolactone monomer; 2-Oxacycloheptanone; Hexanoic acid, epsilon-lactone; Placcel M;.epsilon.-Caprolactone; 2-Oxepanone, 6-Hydroxycaproic acid lactone; Poly(?-caprolactone)Block copolymerBiodegradableMicellesShape-memory effectPolymer networkPrecursor; polycaprolactone; 2-Oxepanone, 6-Hexanolactone; 1,6-Hexanolide; 1-Oxa-2-oxocycloheptane; 2-Oxacycloheptanone; 2-Oxepanone; 2-Oxohexamethylene oxide; 6-Hexanolactone; 6-Hexanolide; 6-Hydroxyhexanoic acid lactone; 6-Hydroxyhexanoic acid, epsilon-lactone; Caprolactone; epsilon-Caprolactone; epsilon-Caprolactone monomer; Hexan-6-olide; Hexanoic acid, epsilon-lactone; 6-Hydroxyhexanoate lactone; 6-Hydroxyhexanoate, epsilon-lactone; Hexanoate, epsilon-lactone; epsilon-Captolactamium hydrogen sulfate; degradation, hydrolysis, poly(?-caprolactone), macromolecular design; : ?-caprolactone, ?-butyrolactone, hydrolytic degradation, hydrocortisone, drug-delivery systems; ?-Hexalactone; ?-Hexanolactone; poly-[epsilon]-caprolactone; Cellulose laurate, Poly (?-caprolactone), Blends, Thermal behaviors, Miscibility; Poly(L-lactic acid-co-?-caprolactone); Poly(L-lactide-co-?-caprolactone); Poly[oxy(1-methyl-2-oxoethylene)/oxy(1-oxohexane-1,6-diyl)]; Poly[(3S,6S)-3,6-dimethyl-1,4-dioxane^2,5-dione/2-oxepanone]; -(C3H4O2)n-(C6H10O2)m–O-CO-CH(CH3)-O-CO-(CH2)5-;; Oxepan-2-one; Advanced manufacturing technologies, Scaffolds, Biological analysis and testing; Bioactive glass, poly(?-caprolactone), nanofibres, mechanical properties, skin tissue engineering; 6-Hexanolactone; 2-Oxepanone; Triflates Poly(?-caprolactone) 6-Hydroxyhexanoic acid Water ; METIS-106358Bock copolymers-caprolactoneIR-71424stannous octoateL-lactideRing-opening polymerization; Atopic dermatitis, poly(?-caprolactone), prolonged drug release, hydrocortisone acetate, nanoparticles; Waterlogged wood; Dehydration; Consolidation; PCL; Ring-opening polymerization (ROP); Caprolactone-Modified Phenoxy Resins; click reaction; complexation; cyclodextrin; encapsulation; nanoparticles; KAPROLAKCTON; KAPROLACKTON; CAPROLcton; kapro lacton; capro lacton; capro lacton; kaprolaktone; kaprolactone; kaprolakton; caprolactone; KAPROLACTONE; KAPROLAKTON; KAPRO; LAKTON; LACTONE; KAPRO LACTONE; CAPRO; LACTONE; CAPROLACTONE; KAPROLAKTON; Zeta PotentialTransfection EfficiencyPluronicPolyethyleneimineGlycidyl Methacrylate;Graphene, polymer nanocompostite, dispersion, carbon composite;

 

 

 

 

 

 

 


Abstract:
An overview of the recent advances of functionalized poly(caprolactone)s (PCL) and their role in micellar drug delivery systems is presented. Various strategies for the functionalization of ?-caprolactone (?CL) and poly(caprolactone)s are discussed together with the approaches for the engineering of PCL-based micellar assemblies. Hydrophilic moieties, halogens, amines, and unsaturated functional groups have been conjugated to PCL by post-polymerization chemical modification. These pendant functional groups were further modified by deprotection, elimination, 1,3-Huisgen cycloaddition, or cross-linking reactions. Alternately, the anionic activation of PCL enabled the post-polymerization grafting of functional groups onto the polyester backbone. Furthermore, special attention has been given to the engineering of micellar cores to enhance their stability and interaction with encapsulated or covalently conjugated drug molecules. The engineering of the micelle hydrophilic block was also explored to achieve active targeting and enhanced cellular uptake. A combination of these strategies enabled the fine-tuning of functionalized PCL copolymers to generate micelles with properties conducive to drug delivery applications. Functionalized PCL represent a promising direction in the development of tunable micellar drug delivery systems.

 

Introduction
The development of new nanoscale systems for the encapsulation of drugs or imaging agents, which could be used in the treatment, localization or diagnosis of diseased tissues, represents one of the most interesting aims for researchers working in the realm of biochemistry. A lot of such systems have been reported in the past years, including nanovesicles based on natural macromolecular compounds, liposomes formed by autoassemble of phospholipids in aqueous medium , and nanovesicles formed by the autoassemble of synthetic amphiphilic copolymers, polymersomes. There is a broad variety of conditions which have to be met, both for nanoparticles and for the macromolecular compounds that underlie their formation .

The existence of various barriers present at different levels of the human body, necessitates the use of nano-level carriers. Regarding the requirements for the macromolecular compounds used to form nanoparticles, among the most important are biocompatibility, biodegradability and nontoxicity . The aliphatic polyesters combine the requirements above mentioned. Consequently, they had a huge impact on the biomedical field and are used in surgical sutures, tissue scaffolding and for bone screws . Between them, one of the most studied and used is poly(?-caprolactone), a linear aliphatic polyester, obtained by ring-opening polymerization of ?-caprolactone.

Poly(?-caprolactone) was used in several combinations, including click reaction products. Functionalized polyester was obtained, which was further used for grafting ß-CD on it. The final product has been proven to exhibit a host-guest ability with different compounds. Pseudo-polyrotaxanes based on propargyl functionalized poly(?-caprolactone) and mono-(6-azido-6-desoxy)-ß-CD have been successfully obtained.

Here, we propose to obtain an amphiphilic behavior by using poly(?-caprolactone), which is known for its high hydrophobicity. To obtain an amphiphilic behavior requires the presence of a hydrophilic compound, which also has to comply with the biocompatibility, biodegradability and nontoxicity requirements. Copper catalyzed click chemistry became a very important tool for the synthesis of new polymeric structures over the past years and represents an attractive method for bonding a polyester chain with a hydrophilic compound .

The use of propargylic alcohol as an initiator leads to a polyester with an acetylenic end group, which allows its use as a click reaction precursor. The chemical modification of CD, consisting of the selective substitution of the C6-hydrogen with an azidic group, permits its use as a click reaction partner for the modified poly(?-caprolactone). CDs are cyclic oligosaccharides composed of ?-(1-4)-linked ?-D-glucosyl units . They have a hydrophobic cavity in their interior, whereas the exterior part is hydrophilic. Drugs with adequate sizes can be complexed by the internal hydrophobic part of the CDs, while macromolecular drugs are only partially included. Host-guest interactions between a monoacrylated CD and N-isopropylacrylamide based copolymer have been reported . The characterization and the morphology of a complex based on fish oil encapsulated in CD with the use of polycaprolactone have also been reported . Furthermore, CD inclusion complexes with different essential oils and their potential application for antimicrobial delivery have been described.

The aim of this study was to develop a ß-CD-poly-?-caprolactone compound by click chemistry, which is able to form nanoparticles in water. Once obtained, the nanoparticles were used for host-guest behavior studies with different hydrophobic compounds, including phenolphthalein and adamantyl carboxylate. The ability of the click reaction product to complex umbelliferone was also investigated, based on its structural similarity with other hydrophobic compounds previously described in the literature as guests for CD.

 

 


Özet:
Fonksiyonelletirilmi poli (kaprolakton) s (PCL) ‘nin son zamanlardaki ilerlemeleri ve bunlarn mikellar ilaç verme sistemindeki rollerine genel bir bak sunulmaktadr. PCL bazl miselis gruplarnn mühendislii yaklamlar ile birlikte ?-kaprolakton (?CL) ve poli (kaprolakton) larn ilevselletirilmesi için çeitli stratejiler tartlmtr. Hidrofilik ksmlar, halojenler, aminler ve doymam fonksiyonel gruplar, polimerizasyon sonras kimyasal modifikasyon ile PCL’ye konjuge edilmitir. Bu sarkan fonksiyonel gruplar, koruma kaldrma, eleme, 1,3-Huisgen siklokatlama veya çapraz balama reaksiyonlar ile daha da modifiye edilmitir. Alternatif olarak, PCL’nin anyonik aktivasyonu, fonksiyonel gruplarn polyester omurgasna polimerizasyon sonras alanmasn salad. Ayrca, kapsüllenmi veya kovalent olarak konjuge ilaç molekülleri ile stabilitelerini ve etkileimlerini arttrmak için misel çekirdeklerinin mühendisliine özel dikkat gösterilmitir. Misel hidrofilik bloun mühendislii ayrca aktif hedefleme ve gelimi hücresel alm elde etmek için aratrlmtr. Bu stratejilerin bir kombinasyonu, ilevselletirilmi PCL kopolimerlerinin, ilaç verme uygulamalarna elverili özelliklere sahip olan miseller üretmesi için ince ayarn mümkün klmtr. Fonksiyonel PCL, ayarlanabilir miyelin ilaç verme sistemlerinin gelitirilmesinde umut verici bir yönü temsil eder.

 

Giri
Hastalkl dokularn tedavisinde, lokalizasyonunda veya tehisinde kullanlabilen, ilaçlarn veya görüntüleme ajanlarnn kapsüllenmesi için yeni nano ölçekli sistemlerin gelitirilmesi, biyokimya alannda çalan aratrmaclarn en ilginç amaçlarndan biridir. Geçtiimiz yllarda, doal makromoleküler bileiklere dayanan nanovesiküller, sulu ortamda fosfolipitlerin oto-parçalanmasyla oluturulan lipozomlar ve sentetik amfifilik kopolimerler, polimersomlar tarafndan oluturulan nanovesiküller dahil olmak üzere bu tür sistemlerin birçou bildirilmitir. Hem nanopartiküller hem de formasyonlarnn altnda yatan makromoleküler bileikler için karlanmas gereken çok çeitli koullar vardr .

nsan vücudunun farkl seviyelerinde mevcut olan çeitli engellerin varl, nano seviyeli tayclarn kullanmn gerektirir. Nanopartiküller oluturmak için kullanlan makromoleküler bileiklerin gerekliliklerine ilikin olarak, en önemlileri arasnda biyo-uyumluluk, biyo-bozunabilirlik ve toksik olmama bulunmaktadr. Alifatik polyesterler yukarda belirtilen artlar birletirir. Sonuç olarak, biyomedikal alan üzerinde büyük bir etkisi olmu ve cerrahi dikilerde, doku iskelelerinde ve kemik vidalarnda kullanlmtr . Bunlar arasnda en çok incelenen ve kullanlanlardan biri, ?-kaprolaktonun halka açlarak polimerizasyonuyla elde edilen bir dorusal alifatik polyester olan poli (?-kaprolakton) ‘dur.

Tklama reaksiyon ürünleri dahil olmak üzere çeitli kombinasyonlarda poli (?-kaprolakton) kullanlmtr. Fonksiyonelletirilmi polyester elde edildi; bu, bunun üzerine ß-CD’nin alanmas için ayrca kullanld. Son ürünün, farkl bileiklerle bir konuk-konuk yetenei sergiledii kantlanmtr. Proparjil fonksiyonalize poli (?-kaprolakton) ve mono- (6-azido-6-desoksi) -ß-CD’ye dayal psödo-poleksanlar baarl bir ekilde elde edilmitir.

Burada, yüksek hidrofobiklii ile bilinen poli (?-kaprolakton) kullanarak amfifilik bir davran elde etmeyi öneriyoruz. Amfifilik bir davran elde etmek için, ayn zamanda biyo-uyumluluk, biyo-bozunabilirlik ve toksisite gerekliliklerine uymak zorunda olan bir hidrofilik bileiin varln gerektirir. Bakr katalizli klik kimyas, son yllarda yeni polimerik yaplarn sentezi için çok önemli bir araç haline gelmitir ve bir polyester zincirinin bir hidrofilik bileik ile balanmas için çekici bir yöntemi temsil etmektedir.

Bir balatc olarak propargil alkolün kullanlmas, bir asetilenik uç gruba sahip bir poliestere yol açar, bu da bir tklama reaksiyonu öncüsü olarak kullanlmasna izin verir. C6-hidrojenin bir azidik grupla selektif sübstitüsyonundan oluan CD’nin kimyasal modifikasyonu, modifiye edilmi poli (p-kaprolakton) için bir tkama reaksiyon orta olarak kullanlmasna izin verir. CD’ler, a- (1-4) ile balanm a-D-glukozil birimlerinden oluan siklik oligosakkaritlerdir . ç ksmlarnda hidrofobik bir boluk vardr, d ksm ise hidrofiliktir. Yeterli büyüklükteki ilaçlar, CD’lerin iç hidrofobik ksm tarafndan karmak hale getirilebilirken, makromoleküler ilaçlar sadece ksmen dahil edilir. Monoakrilatlanm bir CD ve N-izopropilakrilamid bazl kopolimer arasndaki konak-konuk etkileimleri bildirilmitir . CD’de kapsüllenmi balk ya bazl bir kompleksin, polikaprolakton kullanm ile karakterizasyonu ve morfolojisi de bildirilmitir. Ayrca, farkl esansiyel yalara sahip CD inklüzyon kompleksleri ve antimikrobiyal uygulama için potansiyel uygulamalar tanmlanmtr.

Bu çalmann amac, suda nanopartiküller oluturabilen tklama kimyas ile bir ß-CD-poli-?-kaprolakton bileiinin gelitirilmesidir. Elde edildikten sonra, nanopartiküller fenolftalein ve adamantil karboksilat dahil olmak üzere farkl hidrofobik bileiklerle konuk-konuk davran çalmalar için kullanld. Tklama tepkime ürününün kompleks umbelliferona olan kabiliyeti de, daha önce literatürde CD için kullanlan dier hidrofobik bileiklerle yapsal benzerliine dayanarak aratrlmtr.

Explore: