DIGLYCOLAMINE;
DIGLYCOLAMINE;
CAS NUMBER; 929-06-6
EC NUMBER; 213-195-4
SYNOYMS; Diethylene glycolamine; 2-(2-Aminoethoxy)ethanol; Diethylene Glycolamine; Diglycolamine; Ethylene Glycol Mono(2-aminoethyl) Ether; O (2 Hydroxyethyl)ethanolamine ; 1-Amino-2-(2-hydroxyethoxy)ethane; 2-(2-Aminoethoxy)ethanol [ACD/IUPAC Name]; 2-(2-Aminoethoxy)ethanol [German] [ACD/IUPAC Name]; 2-(2-Aminoéthoxy)éthanol [French] [ACD/IUPAC Name]; 2-(2-hydroxyethoxy)ethylamine; 213-195-4 [EINECS]; 2-Aminoethoxyethanol; 4-04-00-01412 [Beilstein]; 5-Aminoethyl 2-hydroxyethyl ether; 5-Hydroxy-3-oxapentylamine; 6R5Y84T8W9; 929-06-6 [RN]; Diethylene glycol amine; diethylene glycol monoamine; Diglycolamine; Ethanol, 2- (2-aminoethoxy)-; Ethanol, 2-(2-aminoethoxy)- [ACD/Index Name]; MFCD00008181 [MDL number]; UNII-6R5Y84T8W9; β-(β-Hydroxyethoxy)ethylamine; β-(β-Hydroxyethoxy)ethylamineβ-Hydroxy-β’-aminodiethyl ether; β-Hydroxy-β’-aminoethyl ether; 2-(2′-Aminoethoxy)ethanol; 2-(2-aminoethoxy)ethan-1-ol; 2-(2-Amino-ethoxy)-ethanol; 2-(2-hydroxyethoxy)ethylammonium; 2-(HYDROXYETHOXY)ETHYLAMINE; 2-[2-Aminoethoxy]ethanol; 2-Amino-2′-hydroxydiethyl ether; 2-Aminoethyl 2-hydroxyethyl ether; 2-aminoethyl-2-hydroxyethyl ether; 32130-27-1 [RN]; diethylene glycolamine; Diethyleneglycolamine; Diglycolamine agent; Z2O2Q [WLN]; β(β-hydroxyethoxy)ethylamine; β-Hydroxy-β’-aminoethyl ether; 2-(2-Aminoethoxy)Ethanol; InChI=1S/C4H11NO2/c5-1-3-7-4-2-6/h6H,1-5H; GIAFURWZWWWBQT-UHFFFAOYSA-N; Ethanol, 2-(2-aminoethoxy)-; β-(β-Hydroxyethoxy)ethylamine; β-Hydroxy-β’-aminoethyl ether; Diethylene glycol amine; Diethylene glycol monoamine; 1-Amino-2-(2-hydroxyethoxy)ethane; 2-(2-Aminoethoxy)ethanol; 2-(2-Hydroxyethoxy)ethylamine; 2-Amino-2′-hydroxydiethyl ether; 2-Aminoethoxyethanol; 2-(Hydroxyethoxy)ethylamine; 2-Aminoethyl 2-hydroxyethyl ether; Aminoethoxyethanol; Diglycolamine agent; 5-Hydroxy-3-oxapentylamine; NSC 8610; Aminoethoxyethanol; 2-(2-Aminoethoxy)ethanol;Diethylene Glycol Monoamine; 2-Hydroxyethyloxyethylamine; 2-(2-Aminoethoxy)ethanol, Diethylene glycolamine; MFCD00008181; 906728; Carbon dioxideAlkanolamineDiglycolamineMethyldiethanolamine; GIAFURWZWWWBQT-UHFFFAOYSA-N; 2-(2-AMINOETHOXY)ETHANOL; Diglycolamine; 929-06-6; 2-Aminoethoxyethanol; Ethanol, 2-(2-aminoethoxy)-; Diethylene glycol amine; 2-(2-Hydroxyethoxy)ethylamine; Diethylene glycol monoamine; 2-Amino-2′-hydroxydiethyl ether; 1-Amino-2-(2-hydroxyethoxy)ethane; 5-Hydroxy-3-oxapentylamine; Diethylene glycolamine; 2-(2-aminoethoxy)ethan-1-ol; NSC 86108; HSDB 5770; 5-Aminoethyl 2-hydroxyethyl ether; beta-(beta-Hydroxyethoxy)ethylamine; beta-Hydroxy-beta’-aminoethyl ether; EINECS 213-195-4; UN3055; beta-Hydroxy-beta’-aminodiethyl ether; 2-(Hydroxyethoxy)ethylamine; BRN 0906728; .beta.-(.beta.-Hydroxyethoxy)ethylamine; 2-Aminoethyl 2-hydroxyethyl ether; GIAFURWZWWWBQT-UHFFFAOYSA-N; MFCD00008181; .beta.-Hydroxy-.beta.’-aminoethyl ether; Ethylene Glycol Mono(2-aminoethyl) Ether; DSSTox_CID_73412-[2-aminoethoxy]ethanol; DSSTox_RID_78414; DSSTox_GSID_27341; CAS-929-06-6; 2-(2-aminoethoxy)-ethanol; UNII-6R5Y84T8W9; Diglycolamine agent; Amino-PEG2-alcohol; 2-(aminoethoxy)ethanol; 2(2-aminoetoxy)ethanol; 2-(aminoethoxy) ethanol; 2-aminoethoxyethanol[qr]; ACMC-209rj3; 2-(2-aminoethoxy)-ethano; 2-(2-aminoethoxyl)ethanolN-2-hydroxyethoxyethylamine; AC1Q54NG; AC1Q54NH; 2-(2′-aminoethoxy)ethanol; 2-(2-amino-ethoxy)ethanol; 2-(2-aminoethoxy) ethanol; 2-(beta-aminoethoxy)ethanol; WLN: Z2O2Q; SCHEMBL18700; 2-(2-amino-ethoxy) ethanol; 2-(2-amino-ethoxy)-ethanol; 4-04-00-01412 (Beilstein Handbook Reference); KSC490G8J; 2-[(2-aminoethyl)oxy]ethanolAC1L220R; O-(2-Hydroxyethyl)ethanolamine; CHEMBL3183757; DTXSID6027341; CTK3J0384; MolPort-001-791-388; 2-(2-Aminoethoxy)ethanol, 98%; 6R5Y84T8W9; BB_SC-7134; KS-00000V2C; NSC86108; ZINC1760798; beta-(beta’-hydroxyethoxy)ethylamine; Tox21_201287; Tox21_303163; ANW-39949; BBL011501; CCG-40525; NSC-86108; SBB060906; STL146613AKOS000120504; MCULE-1073574088; RTR-032042; TRA0096660; NCGC00249016-01; NCGC00257067-01; NCGC00258839-01; AJ-31582; AK139304; AN-22256; BP-23664; BP-31037; KB-13858LS-66421; SC-49862; DB-057345; TR-032042; A0301; FT-0608422; ST45255402; 2-(2-Aminoethoxy)ethanol [UN3055] [Corrosive]; 2-(2-Aminoethoxy)ethanol [UN3055] [Corrosive]I04-1064; W DGA;ADG;dga[qr];DIGLYCOLAMINE;AMINODIGLYCOL;Aminoethoxyethanol;Diglycolamine agent;2-Aminoethoxyethanol;DIETHYLENE GLYCOLAMINE;2-(2-aminoethoxy)-ethano; 2-(2-Aminoethoxy)ethanol; DGA; Carbon steel, corrosion, corrosion resistance, impedance, passivation, polarization curve; C4-H11-N-O2; 3,6-dichloro-o-anisic acid – 2-(2-aminoethoxy)ethanol (1:1); [2-(2-hydroxyethoxy)ethyl]ammonium 3,6-dichloro-o-anisate; 3,6-dichloro-2-methoxybenzoic acid – 2-(2-aminoethoxy)ethanol (1:1); [2-(2-hydroxyethoxy)ethyl]ammonium 3,6-dichloro-2-methoxybenzoate; 3,6-dichloro-2-methoxybenzoic acid compound with 2-(2-aminoethoxy)ethanol (1:1); InChI=1S/C8H6Cl2O3.C4H11NO2/c1-13-7-5(10)3-2-4(9)6(7)8(11)12;5-1-3-7-4-2-6/h2-3H,1H3,(H,11,12);6H,1-5H2; QURLONWWPWCPIC-UHFFFAOYSA-N; 2 – (2 – Aminoethoxy) Ethanol, 2 – Aminoethoxy Ethanol, ADEG ®, Amino – Diethylene Glycol, DGA, Ethanol, 2 – (2 – Aminoethoxy) -; DGLYCOLAMNE; DIGLYCOLAMNE; DIGLYKOLAMNE; DGLYCOLAMINE; DIGLYCOLAMINE; DIGLYKOLAMINE; DGLYKOLAMNE; diglycolamine; dglycolamne; dglkolamn; diglikolamin; diglikolamine; diglykolamine; diglycolamine; dglkolamne; d glcol amne; di glycol amine; d glycol amne; diglycolamine; dglycolamne; dglukolamne; dglkolamin;
INTRODUCTION
Amine solutions have been used to remove acid gases from natural and refinery gases for many decades. Amine-acid gas corrosion of carbon steel has been investigated extensively.1 It has been recognized that amine solution corrosion can be caused by many factors, including the acid gases themselves, high operating temperatures, amine solution concentration, high rich and lean amine loading (moles acid gas/mole amine), amine type, and amine degradation products.1-7 However, little information has been reported concerning the electrochemical behavior of amine solution corrosion, and the corrosion mechanism still is obscure. Furthermore, diglycolamine (DGA) is a relative newcomer in this application,8-9 and there have been very few electrochemical studies on DGA solution corrosion. In the present work, corrosion of carbon steel in carbon dioxide (CO2)-saturated DGA solution was investigated using potentiodynamic polarization and impedance measurements at various DGA concentrations saturated with 4.5 MPa CO2 at room temperature (RT) and at 100°C. Polarization curves and impedance spectra were analyzed. The objective was to assess the influences of DGA concentration and temperature on electrochemical behavior and the mechanism of the cathodic and anodic reactions.
Abstract
Absorption of CO 2 into aqueous DGA (Diglycolamine) was performed at 25-60°C in a wetted-wall column. The absorption data were analyzed using a rigorous model based on eddy diffusivity theory and approximations assuming pseudo-first-order (PFO) and interface pseudo-first-order (IPFO) reactions. The PFO is a good approximation for CO 2 absorption into DGA at a CO 2 loading of less than 0.2 mol/mol DGA. At CO 2 loadings greater than 0.4, instantaneous reactions are approached. The IPFO model matches the rigorous model very well. The second-order rate constant in 65 wt % DGA at 25°C for the reaction with CO 2 is four times larger than previously published values, but 25 wt % DGA yields a rate constant which is in good agreement with literature values. This finding suggests that the second-order rate constant is probably a function of DGA concentration. The second-order rate constant in 65 wt % DGA increases by a factor of 5 from 0 to 0.4 mol CO 2/mol DGA. Experiments with 65 wt % DGA + glycolic acid and 65 wt % DGA + potassium formate at 25°C and 40°C showed similar trends. The rate constant increases a factor of 2 to three in these solutions, suggesting that the rate constant is a function of ionic strength.
Application:
DGA is essentially clorless,slightly viscous liquid with a mild amine odor. DGA is miscible with water, alcohols, and aromatich.
1. Diglycolamine mainly used as the acidic gas absorbent; surfactants and wetting agents;
2. Used as a raw material for polymers;
3. Particularly good performance as a desulfurization agent. Alpine use, especially for hot, dry, desert areas;
4. DGA can be produced, or morpholin-generation or as morpholinyl production by-product recovery.
GR
Uzun yllardan beri doal ve rafineri gazlarndan asit gazlarn uzaklatrmak için amin solüsyonlar kullanlmtr. Karbon çeliinin amin-asit gaz korozyonu youn olarak aratrlmtr.1 Amino çözeltisi korozyonunun asit gazlar, yüksek çalma scaklklar, amin solüsyon konsantrasyonu, yüksek zengin ve yasz amin yüklemesi gibi birçok faktörden kaynaklanabilecei bilinmektedir. asitler asit gaz / mol amin), amin tipi ve amin ykm ürünleridir.1-7 Ancak, amin solüsyonu korozyonunun elektrokimyasal davranlar hakknda çok az bilgi bildirilmitir ve korozyon mekanizmas hala belirsizdir. Ayrca, diglycolamine (DGA) bu uygulamada nispeten yeni bir alcdr, 8-9 ve DGA çözeltisi korozyonu üzerinde çok az elektrokimyasal çalma yaplmtr. Bu çalmada karbon dioksit (CO2) doymu DGA çözeltisi korozyonu, oda scaklnda (OS) ve 100 ° C’de 4.5 MPa CO2 ile doymu çeitli DGA konsantrasyonlarnda potansiyodinamik polarizasyon ve empedans ölçümleri kullanlarak aratrlmtr. Polarizasyon erileri ve empedans spektrumlar analiz edildi. Amaç, DGA konsantrasyonunun ve scakln elektrokimyasal davran üzerindeki etkilerini ve katodik ve anodik reaksiyonlarn mekanizmasn deerlendirmekti.
Özet
CO2’nin sulu DGA’ya (Digilikolamin) emilmesi, slanm bir duvar kolonunda 25-60 ° C’de gerçekletirilmitir. Absorpsiyon verileri eddy difüzivite teorisine dayanan titiz bir model ve psödo-birinci mertebeden (PFO) ve pseudo-first-order (IPFO) reaksiyonlar varsaylarak yaklamlar kullanlarak analiz edilmitir. PFO, 0.2 mol / mol DGA’dan daha az bir CO2 yüklemesinde DGA’ya absorpsiyon için iyi bir yaklamdr. 0,4’ten büyük CO 2 yüklemelerinde, anlk reaksiyonlara yaklalmaktadr. IPFO modeli titiz modele çok iyi uyuyor. CO2 ile tepkime için 25 ° C’de% 65 DGA’da ikinci derece oran sabitinde, önceden yaynlanm deerlerden dört kat daha büyük olmakla birlikte, arlkça% 25 DGA, literatür deerleri ile iyi bir uyum içinde olan bir hz sabitini vermektedir. Bu bulgu, ikinci mertebeden oran sabitinin muhtemelen DGA konsantrasyonunun bir fonksiyonu olduunu düündürmektedir. % 65’lik DGA’da ikinci dereceden hz sabiti, 0 ila 0.4 mol CO2 / mol DGA’dan 5 kat artar. 25 ° C ve 40 ° C’de arlkça% 65 DGA + glikolik asit ve% 65 DGA + potasyum format ile yaplan deneyler benzer eilimler göstermitir. Hz sabiti, bu çözeltilerde 2 ila 3 faktörünü arttrr, bu da hz sabitinin iyonik kuvvetin bir fonksiyonu olduunu gösterir.
Uygulama:
DGA esas olarak hafif bir amin kokusuna sahip, klorsuz, hafif viskoz bir svdr. DGA, su, alkoller ve aromatich ile kartrlabilir.
1. Diglycolamine asidik gaz emici olarak kullanlr; yüzey aktif maddeler ve slatc maddeler;
2. Polimerler için hammadde olarak kullanlr;
3. Kükürt giderme ajan olarak özellikle iyi performans. Özellikle scak, kuru, çöl alanlar için Alp kullanm;
4. DGA üretilebilir, ya da morfolin üretimi ya da morfolinil üretimi yan ürün geri kazanm olarak üretilebilir.