GLYOXAL

Table of Contents

GLYOXAL

GLYOXAL

CAS NUMBER: 107-22-2
EC NUMBER: 203-474-9

 

GLYOXAL; Ethanedial; 107-22-2; Oxalaldehyde; oxaldehyde; 1,2-Ethanedione; Glyoxylaldehyde;Diformyl; Biformal; Biformyl; Diformal; Aerotex glyoxal 40; Glyoxal aldehyde; Ethanedial, trimer; Ethanediol, trimer; Glyoxal, 40%; Glyoxal solution; Glyoxal solutions; CCRIS 952; UNII-50NP6JJ975; Ethane-1,2-dione; C2H2O2; HSDB 497; Glyoxal, 29.2%; EINECS 203-474-9; Glyoxal, 40% in water; BRN 1732463; AI3-24108; CHEBI:34779; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; Ethane-1,2-dione; C2H2O2; HSDB 497; Glyoxal, 29.2%; EINECS 203-474-9; Glyoxal, 40% in water; BRN 1732463; AI3-24108; CHEBI:34779; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; MFCD00006957; NCGC00091228-01; DSSTox_CID_5364; DSSTox_RID_77764; DSSTox_GSID_25364; 40094-65-3; Ethanedione; CAS-107-22-2; Glyoxal solution, ~40% in H2O (~8.8 M); bisformyl; oxypolygelatine; Gelifundol; Oxypolygelatin; Ethandial; Glycoxal; Glyfosfin; ethane dial; (oxo)acetaldehyde; ethane-1,2-dial; Protectol GL 40; ODIX; NSC 262684; AC1L1PPU; ACMC-1BV6U; Glyoxal, 40 % Solution; Glyoxal solution, 40.0%; 4-01-00-03625 (Beilstein Handbook Reference); BIDD:ER0284; (CHO)2; AC1Q28J9; Glyoxal, Biformyl, Oxalaldehyde; CHEMBL1606435; DTXSID5025364; CTK0H4953; Glyoxal, 40% w/w aq. soln.; MolPort-001-780-154; 50NP6JJ975; BB_SC-7204; ZINC8437750; Tox21_111105; Tox21_202517; NW-43524; BBL011519; LS-36; NSC262684; STL146635; AKOS000119169; Glyoxal solution, 40 wt. % in H2O; MCULE-3212938778; NSC-262684; RP18241; RTR-001406; TRA0067179; KS-00000V42; GLYOXAL, 76%, POWDER (TRIMER); NCGC00260066-01; AN-22473; KB-52297; OR034237; OR369233; SC-19118; Glyoxal solution, CP, 40 wt. % in H2O; TR-001406; FT-0626792; G0152; X8004; Glioxaldehit; etandial, 1,2-Etandiol; Diformil; Etandione; Glioxal aldehit; C14448; Glyoxal solution, 40 wt. % in water 100ml; 57421-EP2269977A2; 57421-EP2270006A1; 57421-EP2289896A1; 57421-EP2308878A2; 57421-EP2377845A1; Gelatins, reaction products with glyoxal, oxidized; J-001740; S14-1487; F2191-0152; Glyoxal solution, ~40% in H2O, for HPLC derivatization; Glyoxal solution, BioReagent, for molecular biology, ~40% in H2O (~8.8 M); 83513-30-8; 9005-91-8; Ethanedial; Ethanedione; Glyoxal; 40094-65-3; 1162; 262684; MD2700000; 2810; 50NP6JJ975; Oxaldehyde; InChI=1S/C2H2O2/c3-1-2-4/h1-2H; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; C(=O)C=O; OHCCHO; 1,2-Ethanedione; Diformal; ethandial; Ethanedial; Ethanedione; MFCD00006957; Oxalaldehyd; Oxalaldehyde; GXT; ODIX; oxal; Protectol GL 40; trans-glyoxal; UNII:50NP6JJ975; EDO; Gelifundol; gliksol; glioksal; gilioksal; gilioxal; glioxal; glyoksal; glyoxale; glioksale; glyoxal; ODIX; Oxal; (CHO)2; GLYOXA; GLYOXAL; DIFORMYL; Biformal; Biformyl; Diformal; GLYOXALE; CB1280241; InChIKeyLEQAOMBKQFMDFZ-UHFFFAOYSA-N; NIST Chemistry Reference; Ethanedial(107-22-2); Glyoxal; (Ethanedione, 1, 2-) (107-22-2); AEROTEX GLYOXAL 40; BIFORMAL; BIFORMYL; DAICEL GY 60; DIFORMAL; DIFORMYL; ETHANDIAL; ETHANEDIAL; ETHANEDIOL; ETHANEDIONE; 1,2-ETHANEDIONE; GLYFIX CS 50; GLYOXAL; GLYOXAL ALDEHYDE; GLYOXAL, 40% SOLUTION; GLYOXYLALDEHYDE; GOHSEZAL P; OXAL; OXALALDEHYDE; OXALDEHYDE; PERMAFRESH 114; MFCD00006957; Biformyl; Ethanedial; 1,2-Ethanedione; Oxalaldehyde; Ethanedial; Biformal; Biformyl; Diformyl; Ethanedione; Glyoxal aldehyde; Glyoxylaldehyde; Oxal; Oxalaldehyde; 1,2-Ethanedione; (CHO)2; Diformal; Ethane-1,2-dione; Ethandial; Aerotex glyoxal 40; ODIX; Protectol GL 40; LEQAOMBKQFMDFZ-UHFFFAOYSA-N; GLYOXAL; 1,2-ETHANEDIONE; ETHANEDIAL; DIFORMYL; BIFORMYL; OXALDEHYDE; Ethanedial; oxalaldehyde; Glyoxal, 40 % Solution; 83513-30-8; 50NP6JJ975; 1732463; MFCD00006957; 58.03634000; diformal; ethandial; ethane dial; ethane-1,2-dial; ethanedial; ethanedione; 1,2-ethanedione; gelifundol; glyoxal aldehyde; glyoxylaldehyde; oxalaldehyde; oxaldehyde; Glyoxaldehyde; Ethanedial; 1,2-Ethanedione; Diformyl; Ethanedione; Glyoxal aldehyde; 1,2-Ethanedione; Biformyl; Ethanedial; Oxalaldehyde; C2H2O2 / OHCCHO; Molecular mass: 58.0; ICSC # 1162; Glyoxal, 40 wt% solution in water; AC156220000; AC156220010, AC156220025; AC156220050; AC156225000; BP1370-500; Biformal; Diformal; Ethandial; Glyoxylaldehyde; 231-791-2; 203-474-9; 7732-18-5; ZC0110000; 107-22-2;MD2625000; MD2650000; MD2700000; 7-(2-Hydroxyethyl)decahydro-1H,6H-3a,5a,8a,10a-tetraazapyrene; 1435472-42-6

 

 


GENERAL DESCRIPTION

Yellow crystals melting at15°C. Hence often encountered as a light yellow liquid with a weak sour odor. GLYOXAL is a 2-carbon aldehyde with carbonyl groups on both carbons.GLYOXAL is a yellow crystals melting at15°C. Hence often encountered as a light yellow liquid with a weak sour odor. Vapor has a green color and burns with a violet flame.

Combustible. Incompatible with strong oxidizing agents. Strong reducingagent. May polyermize exothermically. Incompatible with air, water, oxygen,peroxides, amides, amines, hydroxy-containing material s, nitric acid, aldehydes. Corrodes many metals.


Mechanism of Action

Glyoxal attacks the amino groups of proteins, nucleotides, and lipids with its highly reactive carbonyl groups. A sequence of non-enzymatic reactions, called glycation, yields stable advanced glycation end-products (AGEs) with a background extent of 0.1-1% of lysine and arginine residues in proteins and 1 in 1.0 X 10-7 nucleotides in DNA. … Glyoxal forms stable adducts with guanosine by reaction with the N-1 as well as with the exocyclic nitrogen of guanine. The rate of glyoxal-guanine adduct formation is rapid under physiological conditions. A stable tricyclic glyoxal-DNA adduct is formed by covalent binding to two nitrogens of guanine under physiological conditions in vitro. Besides 8-hydroxy-deoxyguanosine, the glyoxal-deoxyguanosine (dG) adduct is one of the major deoxyguanosine oxidation products, being formed by oxygen radicals, lipid peroxidation systems, various types of oxidative stress, and UV irradiation and after in vivo exposure to beta-hydroxy-substituted N-nitrosamines.

Glyoxal (O=CH-CH=O) is an α-oxoaldehyde, and it is often grouped with two similar α-oxoaldehydes, methylglyoxal, and 3-deoxyglucosone. All three compounds are products of various metabolic and oxidative reactions and are capable of causing cellular damage and apoptosis. They are also involved in the formation of advanced glycation end-products (AGEs) which have been linked to long-term sequela of chronic diseases such as diabetic retinopathy, neuropathy, and nephropathy. Glyoxal is primarily detoxified by the glyoxalase system present in the cells of bacteria, protozoa, fungi, plants, animals, and humans. However, it has been suggested that several other enzymes are capable of detoxifying glyoxal, including aldehyde dehydrogenase (ALDH) which can oxidize glyoxal to glyoxylate.

Glyoxal is considered an important intermediate in the formation of advanced glycation end-products (AGEs). AGE modification alters protein function and inactivates enzymes, resulting in disturbance of cellular metabolism, impaired proteolysis, and inhibition of cell proliferation and protein synthesis. The extent of AGE modification increases with the increasing life span of proteins. Consequently, AGEs are especially associated with long-lived proteins, such as collagens, lens crystallins, and neurofilaments, but also have been identified in shorter-lived proteins, including hemoglobin, plasma proteins, lipoproteins, and intracellular proteins.

Inhibition studies in bacterial mutagenicity tests demonstrated the production of the reactive oxygen species superoxide, hydrogen peroxide, and singlet oxygen from glyoxal. The mutagenic activity of glyoxal is related to singlet oxygen, as well as to the intracellular GSH level. The hydroxyl radical plays a prominent role in glyoxal-induced DNA cleavage.

Isolated rat hepatocytes were incubated with different concentrations of glyoxal. Glyoxal by itself was cytotoxic at 5mM, depleted GSH, formed reactive oxygen species (ROS) and collapsed the mitochondrial membrane potential. Glyoxal also induced lipid peroxidation and formaldehyde formation. Glycolytic substrates, eg fructose, sorbitol and xylitol inhibited glyoxal-induced cytotoxicity and prevented the decrease in mitochondrial membrane potential suggesting that mitochondrial toxicity contributed to the cytotoxic mechanism. Glyoxal cytotoxicity was prevented by the glyoxal traps d-penicillamine or aminoguanidine or ROS scavengers were also cytoprotective even when added some time after glyoxal suggesting that oxidative stress contributed to the glyoxal cytotoxic mechanism.

The cytosolic GSH-dependent glyoxalase system is the major pathway for the detoxification of glyoxal … Glyoxal reacts non-enzymatically with GSH with formation of a hemithioacetal, which is subsequently converted to S-glycolylglutathione by glyoxalase I. Glyoxalase II catalyses the hydrolysis of S-glycolylglutathione to glycolate, re-forming the GSH from the first reaction. The activity of glyoxalase I in situ is approximately proportional to the cytosolic concentration of GSH. When GSH is severely depleted (eg, under conditions of oxidative stress), however, 2-oxoaldehyde dehydrogenase and aldose reductase may also metabolize glyoxal. Imbalances in intracellular redox systems may impair these detoxification mechanisms, resulting in higher levels of glyoxal. A further GSH-independent route of detoxification via glyoxalase III exists.


Use and Manufacturing

Fillers
Intermediates
Odor agents
Processing aids, not otherwise listed
Solids separation agents
Water Treatment Products

Its versatile properties the intermediate glyoxal is the product of choice for various applications. In textile manufacturing, for example, this efficient crosslinker decreases water uptake in crosslinking cellulose. In oil recovery, glyoxal crosslinks polymers, thus increasing the viscosity of fracturing fluids.

Glyoxal is also used in the paper, leather and epoxy industries. Beside known applications, glyoxal shows potential for new applications which are still in the early stages of development.

 

 

 

 

 

 

 

GENEL TANIM

15 ° C`de eriyen sar kristallerdir. Bu nedenle sklkla zayf bir eki kokuya sahip açk sar bir sv olarak karlalr. Glyoxal, Buharn yeil bir rengi vardr ve mor bir alevle yanar. Glyoxal, Yancdr. Güçlü oksitleyici ajanlarla uyumaz. Glyoxal, Güçlü indirgeyicidir. Egzotermik olarak polimerize olabilir. Hava, su, oksijen, peroksitler, amidler, aminler, hidroksi içeren maddeler, nitrik asit, aldehitlerle uyumaz. Glyoxal, Birçok metali korozif hale getirir.


HAREKET MEKANZMASI

Glyoxal, proteinleri, nükleotidleri ve lipidlerin amino gruplarna yüksek oranda reaktif karbonil gruplaryla saldrr. Glikasyon denilen enzimatik olmayan reaksiyonlardan oluan bir dizi, DNA`da linyin ve arginin artklarn ve DNA`da 1.0 x 10-7 nükleotidde 1`lik bir arka plan kapsam ile kararl ilerlemi glikasyon son ürünler (AGE`ler) üretir. … Glyoksal, Guanin`in ekzosiklik azotunun yan sra N-1 ile reaksiyona girerek guanozin ile kararl adüktler oluturur. Glioksal-guanin adükt oluumu fizyolojik koullar altnda hzldr. Stabil bir trisiklik glioksal-DNA adüktü, in vitro fizyolojik koullar altnda iki guanin azotuna kovalent balanma yoluyla oluur. 8-hidroksi-deoksiguanozin yan sra, glioksal-deoksiguanozin (dG) adükt, oksijen radikalleri, lipit peroksidasyon sistemleri, çeitli oksidatif stres tipleri ve UV nlamas ile ve in vivo beta maruziyetinden sonra olumakta olan önemli deoksiguanozin oksidasyon ürünlerinden biridir -hidroksi-ikameli N-nitrosaminler.

Glyoxal, gelimi glikasyon son ürünler (AGE`ler) oluumunda önemli bir ara ürün olarak düünülür. AGE modifikasyonu protein fonksiyonunu deitirir ve enzimleri inaktive eder, bu da hücresel metabolizma bozukluuna, bozulmu proteolize ve hücre proliferasyonunun ve protein sentezinin inhibisyonuna neden olur. AGE modifikasyonunun derecesi, proteinlerin ömrünün uzamasna bal olarak artmaktadr. Sonuç olarak, AGE`ler özellikle kollajen, mercek kristalinleri ve nörofilamentler gibi uzun ömürlü proteinlerle ilikilidir ancak ayn zamanda hemoglobin, plazma proteinleri, lipoproteinler ve hücre içi proteinler de dahil olmak üzere daha ksa süren proteinlerde tanmlanmtr.


Bakteriyel mutajenite testlerinde yaplan inhibisyon çalmalar, glioksaldan süperoksit, hidrojen peroksit ve singlet oksijen üretildiini göstermitir. Glioksaln mutajenik aktivitesi, singlet oksijene ve hücre içi GSH seviyesine ilikindir. Hidroksil radikali glioksal kaynakl DNA bölünmesinde belirgin bir rol oynamaktadr.

zole edilmi sçan hepatositleri farkl glkoksal konsantrasyonlar ile inkübe edildi. Glyoxal tek bana 5 mM`de sitotoksik, tükenmi GSH, reaktif oksijen türleri (ROS) oluturdu ve mitokondriyal membran potansiyelini çökertti. Glyoksal ayn zamanda lipit peroksidasyonu ve formaldehit oluumuna neden olmutur. Glikolitik substratlar, örnein fruktoz, sorbitol ve ksilitol glioksal kaynakl sitotoksisiteyi inhibe etti ve mitokondriyal membran potansiyelindeki azalmay önledi, mitokondriyal toksisitenin sitotoksik mekanizmaya katkda bulunduunu düündürdü. Glioksal sitotoksisite, glioksal tuzaklar d-penisilamin veya aminoguanidin ile engellendi veya ROS atclar, glioksal sonras bir süre ilave edildiklerinde bile sitoprotektifti; oksidatif stresin glioksal sitotoksik mekanizmaya katkda bulunduunu düündürdü.

Sitozolik GSH`ye bal glioksalaz sistemi, glioksaln detoksifikasyonunun balca yoludur. Glikoksal, gliokzalaz I ile daha sonra S-glikolglutatiyona dönütürülen bir hemitiyoasetal oluumu ile enzimatik olmayan ekilde GSH ile tepkimeye girer. Glikozalaz II, hidrolizini katalize eder S-glikolglutatyonun glikolata dönütürülmesi, ilk reaksiyondan GSH`nin yeniden oluturulmas. Gloksalaz I in in situ aktivitesi, GSH`nin sitozolik konsantrasyonu ile yaklak olarak orantldr. GSH iddetle tükendiinde (örnein, oksidatif stres koullar altnda), 2-oksoaldehid dehidrojenaz ve aldoz redüktaz da glioksal metabolize edebilir. Hücre içi redoks sistemindeki dengesizlikler bu detoksifikasyon mekanizmalarn bozabilir ve bu da glioksal düzeyinin yükselmesine neden olabilir. Glyokzalaz III yoluyla GSH`den bamsz bir baka detoksifikasyon yolu mevcuttur.


KULLANIM VE MALAT

Dolgu
Ara ürünler
Koku maddeleri
leme yardmclar
Kat ayrma maddeleri
Su Artma Ürünleri

Çok yönlü özellikleri ara glioksal, çeitli uygulamalar için tercih edilen üründür. Örnein, tekstil imalatnda, bu verimli çapraz balayc, çapraz balayc selülozdaki su alm miktarn düürür. Ya geri kazanmnda, glioksal, polimerleri çapraz balar ve böylece krk akkanlarn viskozitesini arttrr.

Glyoxal kat, deri ve epoksi endüstrilerinde de kullanlr. Bilinen uygulamalarn yannda, glioksal, geliimin erken evrelerinde olan yeni uygulamalar için potansiyel göstermektedir. laçlarn, yaptrclar ve kaplayclarn, tekstil reçinelerinin ve tekstil reaktan ürünlerin üretiminde, kat reçinelerinin üretiminde ve of set-özel kaplama banyolarnda kullanlr. Çapraz balayclarn üretiminde ara madde olarak kullanlr. Örnein; kopolimerlerin üretimi, boya ara maddeleri, ilaçlar, mahsül (ürün) koruma ajanlar, böcek ilaçlar, kat, tekstil ve deri yardmclar, korozyon önleyiciler ve fotoraf kimyasallar için kullanlr. Organik sentezlerde (tbbi ürünler, boya maddeleri vs…), ev ve hastane dezenfeksiyonu biositlerinde, çeitli muhteliflerin kullanm, çeitli doldurucularn ynlanmas ve mineral doldurucu muamelesinde, selüloz eterlerinin yumrulama kart ilenmesinde ve hava koku giderici ajanlarda kullanlr. Ayrca hidrokolloidlerin üretimi, epoksi ve fenolik reçinelerin üretiminde ve tütün katks olarak da kullanlmaktadr.

Explore: