LOXANOL PL 5812 (Polyethylene Glycol)
LOXANOL PL 5812 (Polyethylene Glycol)
CAS No. : 25322-68-3
EC No. : 500-038-2
Synonyms:
Polyethylene Glycol (PEG); poly; polyethylene naphthalate; ethylene glycol dimethacrylate; ethyleneglycol dimethacrylate; Le polyéthylène glycol (LOXANOL PL 5812); polyethylene sheet; polyethylen;polyethylene film; biocides; triethylene glycol; ethylene-glycol; polyethylene fibres; polyethylen glycol; ethylene glycol dimethyl ether; polyethylene fibers; polyethylene fibre; ethylene glycol; ethyleneglycol; LOXANOL PL 5812; PEG; Peg; peg; loxanol pl 5812; Loxanol Pl 5812; Loxanol pl 5812; loxanol pL 5812; Loxanol PL5812; Loxanol pL 5812; LOXANOLPL 5812; loxanolpl 5812; LoxanolPl 5812; Loxanolpl 5812; loxanol pL 5812; LoxanolPL 5812; LoxanolpL 5812; LOXANOL PL5812; loxanol pl5812; Loxanol Pl5812; Loxanol pl5812; loxanol pL5812; Loxanol PL5812; Loxanol pL5812; LOXANOL; Loxanol; loxanol; pl; Pl; PL; Polyethylene Glycols; Polyethylene Glycol; POLYETHYLENE GLYCOLS; POLYETHYLENE GLYCOL; polyethylene glycols; polyethylene glycol; Le polyéthylène glycol (LOXANOL PL 5812); Poliethilene Glicols; Poliethilene Glicol; POLETHLENE GLCOLS; POLETHLENE GLCOL; poliethilene glicols; poliethilene glicol; Polethlene Glcols; Polethlene Glcol; Polyéthylène glycol; POLIETHILENE GLICOLS; POLIETHILENE GLICOL; polethlene glcols; polethlene glcol; polietilen glikol; Polietilen Glikol; POLETLEN GLKOL; poletlen glkol; Poletlen Glkol; POLIETILEN GLIKOL; Polietilen glikol; Poletlen glkol; peg; PEG; polietilen oksit; PEO; peo; Polietilen Glikol; PEG; Polietilen Glikol (PEG)(PEG 200-300-400-600-1000-1500-4000-6000-8000-12000-10000-18000-20000); Polyethylene Glycol (PEG); poly; polyethylene naphthalate; ethylene glycol dimethacrylate; ethyleneglycol dimethacrylate; Le polyéthylène glycol (LOXANOL PL 5812); polyethylene sheet; polyethylen;polyethylene film; biocides; triethylene glycol; ethylene-glycol; polyethylene fibres; polyethylen glycol; ethylene glycol dimethyl ether; polyethylene fibers; polyethylene fibre; ethylene glycol; ethyleneglycol; polyethyleneglycol; polyethylene; glycol; plastic; poly ethylene terephthalate; ultrahigh; polyethylene based; ultra high; polyethene; polyethylene wax; polythene; polyethylene resin; polyestrous; polyethene; polyether; polyethnic; polyethylene; polyethylene glycol; polyfoam; polyfunctional; polygala; polygalaceous; Poliethilene glicol; polygalactia; PEG; Macrogol; 1,2-Ethanediol homopolymer; Alcox E 30; Alkox E 100; Alkox E 130; Alkox E 160; Alkox E 240; Alkox E 45; Alkox E 60; Alkox E 75; Alkox R 1000; Alkox R 15; Alkox R 150; Alkox R 400; Alkox SR; alpha-Hydro-omega-hydroxypoly(oxy-1,2-ethanediyl); alpha-Hydro-omega-hydroxypoly(oxyethylene); Antarox E 4000; Aquacide III; Aquaffin; Atpeg 300; Atpeg 4000; Badimol; BDH 301; Bradsyn PEG; Breox 2000; Breox 20M; Breox 4000; Breox 550; Breox PEG 300; CAFO 154; Carbowax; Carbowax 100; Carbowax 1000; Carbowax 1350; Carbowax 14000; Carbowax 1500; Carbowax 1540; Carbowax 20; Carbowax 200; Carbowax 20000; Carbowax 25000; Carbowax 300; Carbowax 3350; Carbowax 400; Carbowax 4000; Carbowax 4500; Carbowax 4600; Carbowax 600; Carbowax 8000; Carbowax Sentry; CCRIS 979; Clearlax; DD 3002; Deactivator H; EC 500-038-2; EINECS 266-688-1; Emkapol 4200; Ethoxylated 1,2-ethanediol; Ethylene glycol homopolymer; Ethylene glycol polymer; Forlax; Gafanol E 200; Gavilax; Glycols, polyethylene; HM 500; HSDB 5159; Lutrol; Lutrol E; Macrogol; Macrogol 3350; Merpol OJ; Miralax; Modopeg; Nosilen; NSC 152324; Nycoline; Oxide Wax AN; Oxyethylene polymer; PEG; PEG 1000; PEG 1500; PEG 1540; PEG 200; PEG 300; PEG 3350; PEG 3500; PEG 400; PEG 4000; PEG 4500; PEG 6000DS; PEG 800; PEG 8o00; Poliethilene glicol; PEG 900; PEG-1000; PEG-1500; PEG-1540; PEG-200; PEG-300; PEG-3350; PEG-3500; PEG-4000; PEG-4500; PEG-800; PEG-8000; PEG-900; Plenvu; Pluracol E; Pluracol E 400, E 600, E 1450; Pluriol E 200; Poly(oxy-1,2-ethanediyl, alpha-hydro-omega-hydroxy-; Poly-G; Poly-G600; Polyethylene glycol; Polyethylene glycol 1000; Polyethylene glycol 1450; Polyethylene glycol 1500; Polyethylene glycol 1540; Polyethylene glycol 200; Polyethylene glycol 300; Polyethylene glycol 3350; Polyethylene glycol 3500; Polyethylene glycol 400; Polyethylene glycol 4000; Polyethylene glycol 4500; Polyethylene glycol 6000; Polyethylene glycol 7000; Polyethylene glycol 800; Polyethylene glycol 8000; Polyethylene glycol 900; Polyethylene oxide; Polyglycol E 300, E 400, E 1450, E 8000; Polyoxyethylene ether; Sentry polyox WSR; UNII-11628IH70O; UNII-1212Z7S33A; UNII-16P9295IIL; UNII-2126FD486L; UNII-2L7WA456VA; UNII-30IQX730WE; UNII-3H4G04L531; UNII-3IG9032SAH; UNII-3WJQ0SDW1A; UNII-439X29GCJZ; UNII-4QIB4U4CQR; UNII-4R4HFI6D95; UNII-5246R0812J; UNII-5655G9Y8AQ; UNII-5IRA46LB71; UNII-5K3991GVWI; UNII-5WKN5KL2O8; UNII-74D3A2BP47; UNII-761NX2Q08Y; UNII-762678AC5R; UNII-77HY82S0LG; UNII-7Z3ER739EB; UNII-8EIY1IHX76; UNII-9XH9HVO466; UNII-B697894SGQ; UNII-FVS1AZD90Y; UNII-G2M7P15E5P; UNII-G3MS6M810Y; UNII-H57W405143; UNII-HAF0412YIT; UNII-HZ58M6D839; UNII-NL4J9F21N9; UNII-OJ4Z5Z32L4; UNII-Q0JET65GEL; UNII-Q662QK8M3B; UNII-R0XY39567G; UNII-RU64142H6P; UNII-RVV61677RZ; UNII-SA1B764746; UNII-TU0XPZ7FZT; UNII-TVH7653921; UNII-U076Q6Q621; UNII-U95VVU3IDQ; UNII-UEP843BRCQ; UNII-UH6KR4953D; UNII-V146K8QJ07; UNII-V46Y6OJ5QB; UNII-VM53EE110J; UNII-X83H03O8BZ; UNII-Y4QO2MSY3X; UNII-ZBR3T82M2V; Glycols, polyethylene (8CI); Poly(oxy-1,2-ethanediyl), alpha-hydro-omega-hydroxy-; LOXANOL PL 5812; PEG; Peg; peg; loxanol pl 5812; Loxanol Pl 5812; Loxanol pl 5812; loxanol pL 5812; Loxanol PL5812; Loxanol pL 5812; LOXANOLPL 5812; loxanolpl 5812; LoxanolPl 5812; Loxanolpl 5812; loxanol pL 5812; LoxanolPL 5812; LoxanolpL 5812; LOXANOL PL5812; loxanol pl5812; Loxanol Pl5812; Loxanol pl5812; loxanol pL5812; Le polyéthylène glycol (LOXANOL PL 5812); Loxanol PL5812; Loxanol pL5812; LOXANOL; Loxanol; loxanol; pl; Pl; PL; Polyethylene Glycols; Polyethylene Glycol; POLYETHYLENE GLYCOLS; POLYETHYLENE GLYCOL; polyethylene glycols; polyethylene glycol; Poliethilene Glicols; Poliethilene Glicol; POLETHLENE GLCOLS; POLETHLENE GLCOL; poliethilene glicols; poliethilene glicol; Polethlene Glcols; Polethlene Glcol; POLIETHILENE GLICOLS; Poliethilene glicol; POLIETHILENE GLICOL; polethlene glcols; polethlene glcol; polietilen glikol; Polietilen Glikol; POLETLEN GLKOL; poletlen glkol; Poletlen Glkol; POLIETILEN GLIKOL; Polietilen glikol; Poletlen glkol; peg; PEG; polietilen oksit; PEO; Poly(oxy-1,2-ethanediyl),alpha-hydro-omega-hydroxy- ethane-1,2-diol, ethoxylated; Polyethylene glycol; Ethanol, 2,2′-(oxybis(2,1-ethanediyloxy)bis-; Macrogol [INN]; Polyethylene glycol; Polyethylene glycol 1000; Polyethylene glycol 1450; Polyethylene glycol 1500; Polyethylene glycol 1540; Polyethylene glycol 200; Polyethylene glycol 300; Polyethylene glycol 3350; Polyethylene glycol 3500; Polyethylene glycol 400; Polyethylene glycol 4000; Polyethylene glycol 4500; Polyethylene glycol 7000; Polyethylene glycol 800; Polyethylene glycol 8000; Polyethylene glycol 900; Polyethylene glycol [NF]; Polyox wsr-N 60; LOXANOL PL 5812; PEG; Peg; peg; loxanol pl 5812; Loxanol Pl 5812; Loxanol pl 5812; loxanol pL 5812; Loxanol PL5812; Loxanol pL 5812; LOXANOLPL 5812; loxanolpl 5812; LoxanolPl 5812; Loxanolpl 5812; Poliethilene glicol; loxanol pL 5812; LoxanolPL 5812; LoxanolpL 5812; LOXANOL PL5812; loxanol pl5812; Loxanol Pl5812; Loxanol pl5812; loxanol pL5812; Loxanol PL5812; Loxanol pL5812; LOXANOL; Loxanol; loxanol; pl; Pl; PL; Polyethylene Glycols; Polyethylene Glycol; POLYETHYLENE GLYCOLS; POLYETHYLENE GLYCOL; polyethylene glycols; polyethylene glycol; Poliethilene Glicols; Poliethilene Glicol; POLETHLENE GLCOLS; POLETHLENE GLCOL; poliethilene glicols; poliethilene glicol; Polethlene Glcols; Polethlene Glcol; POLIETHILENE GLICOLS; POLIETHILENE GLICOL; polethlene glcols; polethlene glcol; polietilen glikol; Polietilen Glikol; POLETLEN GLKOL; poletlen glkol; Poletlen Glkol; POLIETILEN GLIKOL; Polietilen glikol; Poletlen glkol; peg; PEG; polietilen oksit; PEO; peo; Polietilen Glikol; PEG; 61757-59-3; UNII-V85Q4VBH9Y; UNII-LXT3O0X111; Sodium trideceth-7 carboxylate; Sodium trideceth-8 carboxylate; UNII-261OSR59C6; UNII-4AA038CN86; Sodium trideceth-12 carboxylate; Polyethylene glycol carboxymethyl tridecyl ether sodium salt; V85Q4VBH9Y; 2-(Tridecyloxyethyleneoxy)acetic acid, sodium salt; PEG-12 Tridecyl ether carboxylic acid, sodium salt; LXT3O0X111; Tridecyl alcohol ethoxylate methylcarboxylate sodium salt; DTXSID50905273; 261OSR59C6; 4AA038CN86; Polyethylene glycol (7) tridecyl ether carboxylic acid, sodium salt; Sodium [2-(tridecyloxy)ethoxy]acetate; Poly(oxyethylene)tridecylacetate, sodium salt; PEG-7 Tridecyl ether carboxylic acid, sodium salt; PEG-8 Tridecyl ether carboxylic acid, sodium salt; Polyoxyethylene (7) tridecyl ether carboxylic acid, sodium salt; Polyoxyethylene (8) tridecyl ether carboxylic acid, sodium salt; Polyethylene glycol 600 tridecyl ether carboxylic acid, sodium salt; Polyethylene glycol (400) tridecyl ether carboxylic acid, sodium salt; Poly(oxy-1,2-ethanediyl), alpha-(carboxymethyl)-omega-(tridecyloxy)-, sodium salt; Poly(oxy-1,2-ethanediyl), alpha-(carboxymethyl)-omega-(tridecyloxy)-, sodium salt (1:1); 100219-45-2; Polyethylene glycol tridecyl ether phosphate; 2610033; Trideceth-3 phosphate; Trideceth-6 phosphate; Trideceth-10 phosphate; UNII-NKT96BX1OC; NKT96BX1OC; UNII-742N9GLC7T; UNII-Z87POI937S; 742N9GLC7T; SCHEMBL1395457; Z87POI937S; PEG-3 Tridecyl ether phosphate; PEG-6 Tridecyl ether phosphate; DTXSID70873400; PEG-10 Tridecyl ether phosphate; Poly(oxy-1,2-ethanediyl), ?-tridecyl-?-hydroxy-, phosphate; Poly(oxy-1,2-ethanediyl), .alpha.-tridecyl-.omega.-hydroxy-, phosphate; Polyéthylène glycol; Tridecyl alcohol, ethoxylated, phosphated; 2-(Tridecyloxy)ethyl dihydrogen phosphate; Polyoxyethylene (3) tridecyl ether phosphate; Polyoxyethylene (6) tridecyl ether phosphate; Polyoxyethylene (10) tridecyl ether phosphate; Polyethylene glycol (3) tridecyl ether phosphate; Polyethylene glycol 300 tridecyl ether phosphate; Polyethylene glycol 500 tridecyl ether phosphate; Phosphoric acid, (ethoxylated tridecyl alcohol) esters; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-, phosphate; Nonoxynol-10 phosphate; UNII-3KSR4WBF40; Le polyéthylène glycol (LOXANOL PL 5812); Polyethylene glycol 4-nonylphenyl ether phosphate; 3KSR4WBF40; Polyethylene glycol 500 nonyl phenyl ether phosphate; SCHEMBL1092154; PEG-9 Nonyl phenyl ether phosphate; Poly(oxy-1,2-ethanediyl), ?-(4-nonylphenyl)-?-hydroxy-, phosphate; PEG-10 Nonyl phenyl ether phosphate; 4-Nonylphenol, ethoxylated, phosphate ester; Polyoxyethylene (9) nonyl phenyl ether phosphate; Polyoxyethylene (10) nonyl phenyl ether phosphate; Polyethylene glycol 450 nonyl phenyl ether phosphate; Poly(oxy-1,2-ethanediyl), a-(4-nonylphenyl)-?-hydroxy-, phosphate; Poly(oxy-1,2-ethanediyl), alpha-(4-nonylphenyl)-omega-hydroxy-, phosphate; 26-(Nonylphenoxy)-3,6,9,12,15,18,21,24-octaoxahexacosan-1-ol, dihydrogen phosphate; 29-(4-Nonylphenoxy)-3,6,9,12,15,18,21,24,27-nonaoxanonacosane-1-ol dihydrogen phosphate; Polyethylene glycol monooleate; Poliethilene glicol; Polyoxyethylene monoleate; Polyethylene glycol(400)monooleate; LS-72938; Poly(oxy-1,2-ethanediyl), alpha-[(9Z)-1-oxo-9-octadecenyl]-omega-hydroxy; Poly(oxy-1,2-ethanediyl), alpha-(1-oxo-9-octadecenyl)-omega-hydroxy-, (Z)-; LOXANOL PL 5812; PEG; Peg; peg; loxanol pl 5812; Loxanol Pl 5812; Loxanol pl 5812; loxanol pL 5812; Loxanol PL5812; Loxanol pL 5812; LOXANOLPL 5812; loxanolpl 5812; LoxanolPl 5812; Loxanolpl 5812; loxanol pL 5812; LoxanolPL 5812; LoxanolpL 5812; LOXANOL PL5812; loxanol pl5812; Loxanol Pl5812; Loxanol pl5812; loxanol pL5812; Loxanol PL5812; Loxanol pL5812; Le polyéthylène glycol (LOXANOL PL 5812); LOXANOL; Loxanol; loxanol; pl; Pl; PL; Polyethylene Glycols; Polyethylene Glycol; POLYETHYLENE GLYCOLS; POLYETHYLENE GLYCOL; polyethylene glycols; polyethylene glycol; Poliethilene Glicols; LOXANOL PL 5812 (Polietilen Glikol); Poliethilene Glicol; POLETHLENE GLCOLS; POLETHLENE GLCOL; poliethilene glicols; poliethilene glicol; Polethlene Glcols; Polethlene Glcol; POLIETHILENE GLICOLS; POLIETHILENE GLICOL; polethlene glcols; polethlene glcol; polietilen glikol; Polietilen Glikol; POLETLEN GLKOL; poletlen glkol; Poletlen Glkol; POLIETILEN GLIKOL; Polietilen glikol; Poletlen glkol; peg; PEG; polietilen oksit; PEO; Poliethilene glicol; Polyéthylène glycol; Polyéthylène Glycol; polyéthylène glycol; Polyoxyethylene (3) tridecyl ether phosphate; Polyoxyethylene (6) tridecyl ether phosphate; Polyoxyethylene (10) tridecyl ether phosphate; Polyethylene glycol (3) tridecyl ether phosphate; Polyethylene glycol 300 tridecyl ether phosphate; Polyethylene glycol 500 tridecyl ether phosphate; Phosphoric acid, (ethoxylated tridecyl alcohol) esters; Poly(oxy-1,2-ethanediyl), alpha-tridecyl-omega-hydroxy-, phosphate; Nonoxynol-10 phosphate; UNII-3KSR4WBF40; Polyethylene glycol 4-nonylphenyl ether phosphate; 3KSR4WBF40; Polyethylene glycol 500 nonyl phenyl ether phosphate; SCHEMBL1092154; PEG-9 Nonyl phenyl ether phosphate; Poly(oxy-1,2-ethanediyl), (4-nonylphenyl) hydroxy, phosphate; Le polyéthylène glycol (LOXANOL PL 5812)
LOXANOL PL 5812 (Polyethylene Glycol)
Polyethylene glycol (LOXANOL PL 5812) (PEG; /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound with many applications, from industrial manufacturing to medicine. Polyethylene glycol (LOXANOL PL 5812) PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of Polyethylene glycol (LOXANOL PL 5812) PEG is commonly expressed as H-(O-CH2-CH2)n-OH.
Medical uses
Main article: Macrogol
Polyethylene glycol (LOXANOL PL 5812) PEG is the basis of a number of laxatives.[4] Whole bowel irrigation with Polyethylene glycol (LOXANOL PL 5812) and added electrolytes is used for bowel preparation before surgery or colonoscopy. Polyethylene glycol (LOXANOL PL 5812) PEG is also used as an excipient in many pharmaceutical products. When attached to various protein medications, Polyethylene glycol (LOXANOL PL 5812) allows a slowed clearance of the carried protein from the blood. The possibility that Polyethylene glycol (LOXANOL PL 5812) PEG could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4]
Chemical uses of Polyethylene glycol (LOXANOL PL 5812)
The remains of the 16th century carrack Mary Rose undergoing conservation treatment with Polyethylene glycol (LOXANOL PL 5812) PEG in the 1980s
Terra cotta warrior, showing traces of original color. Because Polyethylene glycol (LOXANOL PL 5812) PEG is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[6]
Polyethylene glycol (LOXANOL PL 5812) has a low toxicity and is used in a variety of products.[7] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[8] Since Polyethylene glycol (LOXANOL PL 5812) PEG is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make Polyethylene glycol (LOXANOL PL 5812) PEG one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique.
Polyethylene glycol (LOXANOL PL 5812) is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers.
Polyethylene glycol (LOXANOL PL 5812) PEG has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[9] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, Polyethylene glycol (LOXANOL PL 5812) PEG is used when working with green wood as a stabilizer, and to prevent shrinkage.[10]
Polyethylene glycol (LOXANOL PL 5812) PEG has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[11] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi’an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a Polyethylene glycol (LOXANOL PL 5812) PEG preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[12]
Polyethylene glycol (LOXANOL PL 5812) PEG is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning.
Polyethylene glycol (LOXANOL PL 5812) PEG derivatives, such as narrow range ethoxylates, are used as surfactants.
Polyethylene glycol (LOXANOL PL 5812) PEG has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes. Polyethylene glycol (LOXANOL PL 5812) PEG has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force.[14]
Biological uses of Polyethylene glycol (LOXANOL PL 5812)
Polyethylene glycol (LOXANOL PL 5812) PEG is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions.[6]
Polyethylene glycol (LOXANOL PL 5812) PEG is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. Polyethylene glycol (LOXANOL PL 5812) PEG is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. César Milstein and Georges J. F. Köhler originated this technique, which they used for antibody production, winning a Nobel Prize in Physiology or Medicine in 1984.[4] Polymer segments derived from PEG polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions.
In microbiology, Polyethylene glycol (LOXANOL PL 5812) PEG precipitation is used to concentrate viruses. Polyethylene glycol (LOXANOL PL 5812) PEG is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro.
Gene therapy vectors (such as viruses) can be Polyethylene glycol (LOXANOL PL 5812) PEG-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[15] The size of the Polyethylene glycol (LOXANOL PL 5812) PEG polymer has been shown to be important, with larger polymers achieving the best immune protection.
Polyethylene glycol (LOXANOL PL 5812) PEG is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo.[16][17] In blood banking, Polyethylene glycol (LOXANOL PL 5812) PEG is used as a potentiator to enhance detection of antigens and antibodies.[4][18] When working with phenol in a laboratory situation, Polyethylene glycol (LOXANOL PL 5812) PEG 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required).
In biophysics, Polyethylene glycol (LOXANOL PL 5812) are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance.[19][20]
Commercial uses of Polyethylene glycol (LOXANOL PL 5812)
Polyethylene glycol (LOXANOL PL 5812) PEG is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). Polyethylene glycol (LOXANOL PL 5812) PEG is used in a number of toothpastes[4] as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. Polyethylene glycol (LOXANOL PL 5812) PEG is also under investigation for use in body armor, and in tattoos to monitor diabetes.[21][22] In low-molecular-weight formulations (e.g. PEG 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. Polyethylene glycol (LOXANOL PL 5812) PEG is also used as an anti-foaming agent in food and drinks[23] – its INS number is 1521[24] or E1521 in the EU.[25]
Industrial uses of Polyethylene glycol (LOXANOL PL 5812)
A nitrate ester-plasticized Polyethylene glycol (LOXANOL PL 5812) (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel.[26] Dimethyl ethers of Polyethylene glycol (LOXANOL PL 5812) PEG are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream.
Polyethylene glycol (LOXANOL PL 5812) PEG has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator.[27] Polyethylene glycol (LOXANOL PL 5812) PEG is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving PEG, with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. Polyethylene glycol (LOXANOL PL 5812) PEG is injected into industrial processes to reduce foaming in separation equipment.
Polyethylene glycol (LOXANOL PL 5812) PEG is used as a binder in the preparation of technical ceramics.[28]
Recreational uses of Polyethylene glycol (LOXANOL PL 5812) Polyethylene glycol (LOXANOL PL 5812) PEG is used to extend the size and durability of very large soap bubbles. Polyethylene glycol (LOXANOL PL 5812) PEG is the main ingredient in many personal lubricants.
Health effects of Polyethylene glycol (LOXANOL PL 5812) Polyethylene glycol (LOXANOL PL 5812) PEG is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of anti Polyethylene glycol (LOXANOL PL 5812) PEG antibodies in approximately 72% of the population based on plasma samples from 1990-1999.[medical citation needed] The FDA has been asked to investigate the possible effects of Polyethylene glycol (LOXANOL PL 5812) PEG in laxatives for children.[29]
Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to Polyethylene glycol (LOXANOL PL 5812) PEG, hypersensitive reactions to Polyethylene glycol (LOXANOL PL 5812) PEG are an increasing concern.[medical citation needed] Allergy to Polyethylene glycol (LOXANOL PL 5812) PEG is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain Polyethylene glycol (LOXANOL PL 5812) PEG or were manufactured with Polyethylene glycol (LOXANOL PL 5812) PEG.
When Polyethylene glycol (LOXANOL PL 5812) PEG is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic, stimulating an anti-PEG antibody response in some patients. This effect has only been shown for a few of the many available PEGylated therapeutics, but it has significant effects on clinical outcomes of affected patients.[31] Other than these few instances where patients have anti-PEG immune responses, it is generally considered to be a safe component of drug formulations.
Available forms and nomenclature of Polyethylene glycol (LOXANOL PL 5812)
Polyethylene glycol (LOXANOL PL 5812) PEG, PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically Polyethylene glycol (LOXANOL PL 5812) PEG is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, Polyethylene glycol (LOXANOL PL 5812) PEG has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[32] Polyethylene glycol (LOXANOL PL 5812) PEGs are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[33]
Polyethylene glycol (LOXANOL PL 5812) PEG and PEO are liquids or low-melting solids, depending on their molecular weights. While Polyethylene glycol (LOXANOL PL 5812) PEG and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of Polyethylene glycol (LOXANOL PL 5812) PEG are also available, depending on the initiator used for the polymerization process – the most common initiator is a monofunctional methyl ether Polyethylene glycol (LOXANOL PL 5812) PEG, or methoxypoly(ethylene glycol), abbreviated mPEG. Lower-molecular-weight Polyethylene glycol (LOXANOL PL 5812) PEGs are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity Polyethylene glycol (LOXANOL PL 5812) PEG has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction.[33] Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10-1000 fold that of polydisperse Polyethylene glycol (LOXANOL PL 5812) PEG.
Polyethylene glycol (LOXANOL PL 5812) PEGs are also available with different geometries.
Branched Polyethylene glycol (LOXANOL PL 5812) PEGs have three to ten Polyethylene glycol (LOXANOL PL 5812) PEG chains emanating from a central core group. Star Polyethylene glycol (LOXANOL PL 5812) PEGs have 10 to 100 Polyethylene glycol (LOXANOL PL 5812) PEG chains emanating from a central core group. Comb Polyethylene glycol (LOXANOL PL 5812) PEGs have multiple Polyethylene glycol (LOXANOL PL 5812) PEG chains normally grafted onto a polymer backbone. The numbers that are often included in the names of Polyethylene glycol (LOXANOL PL 5812) PEGs indicate their average molecular weights (e.g. a PEG with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 400.) Most Polyethylene glycol (LOXANOL PL 5812) PEGs include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). Mw and Mn can be measured by mass spectrometry.
PEGylation is the act of covalently coupling a Polyethylene glycol (LOXANOL PL 5812) PEG structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEGylated protein. Polyethylene glycol (LOXANOL PL 5812) PEGylated interferon alfa-2a or -2b are commonly used injectable treatments for hepatitis C infection.
Polyethylene glycol (LOXANOL PL 5812) PEG is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.
Polyethylene glycol (LOXANOL PL 5812) PEGs potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[35] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin. Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) Polyethylene glycol (LOXANOL PL 5812) Polyethylene glycol (LOXANOL PL 5812) (PEG) and related polymers (PEG phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., Polyethylene glycol (LOXANOL PL 5812) PEG is very sensitive to sonolytic degradation and Polyethylene glycol (LOXANOL PL 5812) PEG degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential Polyethylene glycol (LOXANOL PL 5812) PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.[37]
Polyethylene glycol (LOXANOL PL 5812) PEGs and methoxypolyethylene glycols are manufactured by Dow Chemical under the tradename Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including as surfactants, in foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers.
Macrogol, used as a laxative, is a form of Polyethylene glycol (LOXANOL PL 5812). The name may be followed by a number which represents the average molecular weight (e.g. macrogol 3350, macrogol 4000 or macrogol 6000).
Production of Polyethylene glycol (LOXANOL PL 5812)
Polyethylene glycol (LOXANOL PL 5812) 400, pharmaceutical quality
Polyethylene glycol (LOXANOL PL 5812) 4000, pharmaceutical quality
The production of Polyethylene glycol (LOXANOL PL 5812) was first reported in 1859. Both A. V. Lourenço and Charles Adolphe Wurtz independently isolated products that were Polyethylene glycol (LOXANOL PL 5812).[38] Polyethylene glycol (LOXANOL PL 5812) is produced by the interaction of ethylene oxide with water, ethylene glycol, or ethylene glycol oligomers.[39] The reaction is catalyzed by acidic or basic catalysts. Ethylene glycol and its oligomers are preferable as a starting material instead of water, because they allow the creation of polymers with a low polydispersity (narrow molecular weight distribution). Polymer chain length depends on the ratio of reactants.
HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H
Depending on the catalyst type, the mechanism of polymerization can be cationic or anionic. The anionic mechanism is preferable because it allows one to obtain Polyethylene glycol (LOXANOL PL 5812) PEG with a low polydispersity. Polymerization of ethylene oxide is an exothermic process. Overheating or contaminating ethylene oxide with catalysts such as alkalis or metal oxides can lead to runaway polymerization, which can end in an explosion after a few hours.
Polyethylene oxide, or high-molecular weight Polyethylene glycol (LOXANOL PL 5812), is synthesized by suspension polymerization. It is necessary to hold the growing polymer chain in solution in the course of the polycondensation process. The reaction is catalyzed by magnesium-, aluminium-, or calcium-organoelement compounds. To prevent coagulation of polymer chains from solution, chelating additives such as dimethylglyoxime are used.
Alkaline catalysts such as sodium hydroxide (NaOH), potassium hydroxide (KOH), or sodium carbonate (Na2CO3) are used to prepare low-molecular-weight Polyethylene glycol (LOXANOL PL 5812).
What is Polyethylene glycol (LOXANOL PL 5812)?
Polyethylene glycol (LOXANOL PL 5812) (PEG)
Poly(ethylene glycol) (PEG) is a synthetic, hydrophilic, biocompatible polymer with widespread use in biomedical and other applications. PEGs are synthesized using a ring-opening polymerization of ethylene oxide to produce a broad range of molecular weights and molecular weight distributions (polydispersity); however, discrete Polyethylene glycol (LOXANOL PL 5812) PEGs are synthesized with a single, specific molecular weight. Polyethylene glycol (LOXANOL PL 5812) PEGs can be synthesized in linear, branched, Y-shaped, or multi-arm geometries. Polyethylene glycol (LOXANOL PL 5812) PEGs can be activated by the replacement of the terminal hydroxyl end group with a variety of reactive functional end groups enabling crosslinking and conjugation chemistries.
How is Polyethylene glycol (LOXANOL PL 5812) used?
Polyethylene glycol (LOXANOL PL 5812) PEGs are non-toxic, FDA-approved, generally nonimmunogenic, and are frequently used in many biomedical applications including bioconjugation,1 drug delivery,2,3 surface functionalization,4 and tissue engineering.5 Bioconjugation with PEG (also known as PEGylation) is the covalent conjugation of drug targets such as peptides, proteins, or oligonucleotides with Polyethylene glycol (LOXANOL PL 5812) for the optimization of pharmacokinetic properties.6 In drug delivery, Polyethylene glycol (LOXANOL PL 5812) PEGs can be used as linkers for antibody-drug conjugates (ADCs)7 or as a surface coating on nanoparticles to improve systemic drug delivery.6 Polyethylene glycol (LOXANOL PL 5812) PEG hydrogels are water-swollen, three-dimensional, polymer networks resistant to protein adhesion and biodegradation. Polyethylene glycol (LOXANOL PL 5812) PEG hydrogels are produced by crosslinking reactive Polyethylene glycol (LOXANOL PL 5812) PEG end groups and are commonly used in tissue engineering and drug delivery.
Polyethers (PE)
Polyethylene glycol (LOXANOL PL 5812) (PEGs), polypropylene glycols (PPGs), and polytetramethylene glycol come under the class of polyethers and are used in pharmaceuticals, cosmetics, lubricants, inks, and surfactants. Flavobacterium sp. and Pseudomonas sp. together associate and mineralize Polyethylene glycol (LOXANOL PL 5812) PEG completely under aerobic conditions. During degradation, Polyethylene glycol (LOXANOL PL 5812) PEG molecules are reduced one glycol unit at a time after each oxidation cycle. Pelobacter venetianus was found to degrade Polyethylene glycol (LOXANOL PL 5812) PEG and ethylene glycol under anaerobic conditions (Kawai, 1987). High molecular weight Polyethylene glycol (LOXANOL PL 5812) PEGs (4,000 to 20,000) were degraded by Sphingomonas macrogoltabidus and S. terrae, while PPG was degraded by Corynebacterium sp.
Polyethylene glycol (LOXANOL PL 5812) (PEG) is required for efficient transformation of both Saccha-romyces cerevisiae (Rech et al.. 1990) and Schizosaccharomyces pombe (Hood and Stachow, 1990, 1991). Earlier, Shillito et al., (1985) also found that Polyethylene glycol (LOXANOL PL 5812) PEG can enhance the efficiency of gene transfer to plants. The effects of Polyethylene glycol (LOXANOL PL 5812) PEG on transformation are complex. Hood and Stachow (1991) show that the addition of PEG not only extends the length of time the electroporated cells remain permeable but further increases their permeability. During incubation with Polyethylene glycol (LOXANOL PL 5812) PEG, the pores created during electroporation also apparently grow in size. The combined effect of Polyethylene glycol (LOXANOL PL 5812) PEG on the size of the pores and their lifetime may enhance the uptake of DNA and thus result in the observed sixfold improvement in transformation efficiency. A level of 30% PEG gives optimal levels of transformants per microgram of DNA. Heat shock, a nonelectrical method of transformation, also uses Polyethylene glycol (LOXANOL PL 5812) PEG, but by another mechanism that probably facilitates DNA uptake without creating pores, and this may reflect a second mechanism occurring during electroporation.
The PEG-coated fabrics gain not only absorbed and released heat, but also antibacterial properties.17,22 The PEG-treated fabric can inhibit the growth of gram-positive S. aureus and gram-negative E. coli and P. aeruginosa.
The mechanism by which PEG-treated fabrics inhibit bacterial growth is being investigated by Vigo.17 It results from three factors. A slow release of formaldehyde from the DMDHEU cross-linking resin may have an antibacterial effect, as formaldehyde can be used as a disinfecting agent. The PEG may exhibit a form of surfactant behaviour, which also is known to reduce bacterial growth. A third explanation relates to the finish imparting thermal absorption and release properties. The temperature may reach beyond some microorganisms’ growth range, killing those species.
A thermal active non-woven were produced by PEG-treated 100% polypropylene spun bonded-melt blown-spun bonded. The PEG-treated non-woven inhibited bacterial growth.21 The most probable effects that inhibit microbial growth may be attributable to the surfactant-like properties of the bond PEG, which disrupts cell membranes due to the dual hydrophilic-hydrophobic characteristics of the Polyethylene glycol (LOXANOL PL 5812) PEG. This was reported in Vigo and Leonas’s recent work.
Polyethylene glycol (LOXANOL PL 5812) PEG or polyethylene oxide (PEO) has gained wide recognition as a biomaterial because of its high efficiency in resisting protein adsorption, weak immunogenicity, and good compatibility with living cells. Due to lack of mechanical properties, Polyethylene glycol (LOXANOL PL 5812) PEG or PEO materials are generally attached to the surface of a material possessing suitable mechanical properties, such as a polyurethane. Both in vitro and in vivo experiments have shown that PEG-grafted surfaces have great potential for clinical applications in medical devices and implants.31,32 PEG-grafted polyurethanes have been shown to be effective for prevention of bacterial adhesion and subsequent infection,25 and also have exhibited significant reduction of platelet adhesion33,34 and heparin-like anticoagulant activity.35
Grafting Polyethylene glycol (LOXANOL PL 5812) PEG onto polyurethane surfaces is generally performed by a two-step reaction that covalently binds PEG onto the urethane group through an allophanate linkage (Figure 9.2).36 Hexamethylene diisocyanate (HMDI) is added to react with urethane bonds at the surface in the first step to functionalize the surface with isocyanate groups, and then the free isocyanate groups are utilized to bind PEG onto surfaces. The catalyst, such as trimethylamine,36,37 di-n-butyl tin dilaurate,25,38,39 stannous octoate,40 and stannous 2-ethylhexanoate,41 is necessary in allophanate reactions under lower reaction temperatures in the range of 40-60 °C where diisocyanate is used for activating the polyurethane surface, otherwise formation of allophanates from urethane and isocyanate groups generally does not occur below 100 °C. Such a reaction is relatively slow and easily controlled. After 60 min a maximum number of free NCO groups can be obtained and react with functional groups (e.g., single bondOH, single bondNH2, single bondSO3) in Polyethylene glycol (LOXANOL PL 5812) PEG in the second step to graft the polymer onto the surface and obtain the different surface chemistries.25,36,39 Grafting PEG onto a polyurethane surface can also be performed by other techniques. Desai et al.42 used the surface physical interpenetrating networks technique to incorporate PEO and other water-soluble polymers into the surfaces of polyurethane and found PEO with a molecular weight of 18,500 g/mol having an optimal chain length to reduce protein adsorption and prevent protein-mediated biological interactions. Orban et al.43 reported a simple synthesis of PEG-grafted polyurethanes with the PEG grafts emanating from a secondary amine incorporated into the backbone of the polyurethane, and N-Boc-diethanolamine was used as chain extender. PEGs with different molecular weights were grafted onto the Boc-deprotected polyurethanes via chloroformate and the obtained grafted polymers exhibited very little platelet adhesion, although no data were reported about bacterial adhesion inhibition. The other type of PEG or PEO-modified polyurethane can be obtained by blending. Park et al.44 prepared PEO-based multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters. To prepare this coating material, a copolymer containing hydrophilic PEO and hydrophobic poly(polytetramethylene oxide) (PTMO) was first created by a polycondensation reaction in the presence of HMDI, and then the copolymer was blended with segmented polyurethane solution for coating on the urinary catheters. The copolymer additive increased the swellability of coating and adsorbed a significant amount of water. The bacterial adhesion study showed that there was an 85% decrease in adhesion of Staphylococcus epidermidis for blends compared to bare polyurethane.
Polyethylene glycols
Polyethylene glycol (LOXANOL PL 5812) vary in molecular weight from ~200 to up to >1,000,000 Da. Their nature changes from liquids through semi-crystalline materials to resinous solids. Their general structure is H-[-O-CH2-CH2]nOH. The structure of Polyethylene glycol (LOXANOL PL 5812) PEGs has been comprehensively reviewed by Craig [105] and clearly IR, Raman and NMR studies are fundamental to elucidating their structure. Thermal analysis does, however, play roles in examining the crystallinity and types of crystals present in the crystalline and semi-crystalline material. Undoubtedly, in the crystal lattice, PEGs are arranged as lamellae. The polymer chains exist as either extended or folded forms. The proportion of crystals in the folded or extended form is very much dependent on molecular weight. Buckley and Kovacs [113] showed that in PEG 6000 one- and two- folded crystals were apparent. In PEG 10000, one-, two-, three- and four-folded crystals were apparent. Thermal analysis, especially DSC may be used to resolve the structure. Scanning a sample of PEG, cooling and immediately rescanning, results in the production of unstable forms manifesting as a number of endotherm peaks or inflections on the DSC scan. Additionally on second scanning, the heats of fusion will be lower, indicative of an introduction of amorphousness, or less crystallinity, in the sample (Figure 23). For Polyethylene glycol (LOXANOL PL 5812) PEG 4000, Kovacs and Buckley [113] found evidence for instability of the folded crystal form. As the scanning rate increased from 0.5°C min-1 to 8°C min-1, the melting endotherm for the unstable form increased since the lower rates allowed unfolding to occur during the heating process.
Polyethylene glycol (LOXANOL PL 5812) PEG-based hydrogels have been synthesised with degradable thioetherester links by mixing unsaturated PEG-acrylates with nucleophilic PEG-thiols. BSA was incorporated in the hydrogel prior to polymerisation, the cross-linking reaction being self-selective and therefore not involving the protein molecules. As the linkage is hydrolysed, the cross-linking density is reduced and release of albumin occurred. Release rates were modified by changing the degree of functionality of the PEG monomer. Zero-order release was obtained over a four-day period from the tetra-functional PEG-hydrogel.
Degradable hydrogels were prepared by conjugate addition of PEG-multiacrylate to dithiothreitol in the presence of human growth hormone (hGH). It was necessary to precipitate hGH with linear Polyethylene glycol (LOXANOL PL 5812) PEG or Zn2+ in order to protect the hormone during the polymerisation process. Precipitation of the hormone with Zn2+ also increased the stability in the hydrogel and delayed release by slowing the dissolution of the agent. Release was controlled by changing the MW and degree of functionality of the Polyethylene glycol (LOXANOL PL 5812) PEG acrylate. Zero-order release kinetics were achieved in vitro (van de Wetering et al., 2005).
Degradable hyaluronic acid (HA) hydrogels were synthesised by photopolymerisation of vinyl group modified HA in combination with a di-acryloyl PEG-poly(propylene glycol)-PEG tri-block copolymer (Pluronic) (Kim and Park, 2002). Pluronic copolymers are thermally responsive due to the formation of micelles at increased temperatures, and the hydrogel is therefore thermally responsive. The water uptake capacity continuously decreases with increasing temperature, indicating that the association of the Pluronic component occurs within the network and results in a reduction in water uptake capacity of the HA/Pluronic hydrogels. These hydrogels degrade due to the hydrolysis of an ester linkage present in the structural unit of the di-acryloyl Pluronic component. The erosion of the hydrogel occurrs much faster at higher temperatures; this is proposed to be due to the exposure of the ester linkage at higher temperatures, due to the micellisation of Pluronic. Release of recombinant human growth hormone (rhGh) was mainly dependent on the erosion of the hydrogel, and proceeded at a faster rate at 37°C than at 13°C.
Aromatic azo bonds are cleaved in the colon by bacterial azoreductase. Therefore, cross-links composed of aromatic azo groups should degrade in this area of the gut. Hydrogels composed of hydroxyl ethyl methacrylate (HEMA) copolymerised with methacryloyloxy azobenzene were prepared (Shantha, 1995). The hydrogel was pH sensitive and did not swell in simulated gastric fluid (acidic), and drug release was minimal. Drug was released in simulated intestinal fluid in the absence and in the presence of azoreductase producing bacteria. The degree of swelling was higher and drug release increased compared to the acidic environment; however, without the bacteria present in the release media, drug release (5-FU) occurred from the surface only. In the presence of the enzyme, the cross-links were cleaved with a much greater rate of release. Zero-order release of 5-FU was achieved over a period of 4 hours from the degrading hydrogel. This hydrogel could therefore find an application in the oral delivery of sensitive drugs to the colon.
Polyethylene glycol (LOXANOL PL 5812) PEG has a vast number of applications in the medical industry, and the list continues to grow. Due to its non-toxicity and high solubility, it lends itself to many pharmaceutical and biomedical applications.
To begin with, possibly the most common application of Polyethylene glycol (LOXANOL PL 5812) PEG in the medical industry is its use in laxatives. Because PEG can apply osmotic pressure, it can draw water into the waste matter, providing a laxative effect.
In a similar scenario, Polyethylene glycol (LOXANOL PL 5812) PEG is often utilized during whole bowel irrigations to prepare the gastrointestinal tract for investigation or surgery. PEG is also used in many pharmaceutical creams, ointments, and medical solvents.
Peptides, proteins, or oligonucleotides are used as drug targets for various illnesses. PEG can be used to bioconjugate itself to the target, by coupling itself with the target molecule to optimize the pharmacokinetic properties of drug treatment.
PEG can be used as an inactive substance that acts as the vehicle for a drug. The process of drug delivery relies heavily on PEG because the compound can link together antibody-drug conjugates (ADCs). It can also be used to improve systematic drug delivery by adding it as a surface coating on nanoparticles. Polyethylene glycol (LOXANOL PL 5812) PEG can also be used to slow the clearance of coated proteins from the blood in biomedicines.
Polyethylene glycol (LOXANOL PL 5812) PEG hydrogels are also used in drug delivery, as well as in tissue engineering. PEG hydrogels are polymer networks that are created by crosslinking reactive PEG end groups, resulting in gels that are resistant to protein biodegradation and adhesion. These properties are beneficial to tissue engineering and drug delivery. Polyethylene glycol (LOXANOL PL 5812) PEG has many roles in the chemical industry, which also cross over into applications in other industries. Firstly, it is well known for its use as a binding and dispersing agent, as it can improve the separation of particles and prevent clumping.
Also, as Polyethylene glycol (LOXANOL PL 5812) PEG has hydrophilic properties, it has found a role in preventing the non-specific sticking of proteins in studies using single-molecule fluorescence. Also, because the compound is non-toxic and recognized as safe by the FDA, it has been able to be used in numerous coatings that enable lubrication in various scenarios. Applications in preservation have also found a use for Polyethylene glycol (LOXANOL PL 5812) PEG, which is now employed to prevent and slow the damage and shrinkage of wood that has been submerged. It was used to preserve the Vasa warship in Stockholm, replacing the water trapped within the wood to prevent warping and shrinking.
LOXANOL PL 5812 (Polietilen Glikol)
LOXANOL PL 5812 Tanm ve Kullanm Alanlar :
Polietilen glikol (LOXANOL PL 5812) üretimi ilk kez 1859 ylnda bildirildi. Polietilen glikol (LOXANOL PL 5812), etilen oksit, su, etilen glikol veya etilen glikol oligomerleri ile etkileim yoluyla üretilir. Reaksiyon asidik veya bazik katalizörler ile katalize edilir. Düük polidispersite (dar molekül arl dalm) olan polimerlerin üretilmesine izin verdiklerinden, etilen glikol ve bunun oligomerleri, su yerine bir balangç malzemesi olarak tercih edilir. Polimer zincir uzunluu, reaktanlarn oranna baldr. Polietilen glikol (LOXANOL PL 5812) kimyasal förmülü:
HOCH 2 , CH 2 , OH + n (CH 2 CH 2 O) → HO (CH 2 CH 2 O) n + 1 ‘H
Katalizörün niteliine bal olarak, polimerizasyon mekanizmas katyonik veya anyonik olabilir. Anyonik mekanizma tercih edilir çünkü düük polidispersite ile PEG elde edilebilir. Etilen oksit polimerizasyonu egzotermik bir ilemdir. Ar snma veya etilen oksitin alkaliler veya metal oksitler gibi katalizörlerle kirlenmesi, birkaç saat sonra patlamaya neden olabilecek ar polimerlemeye neden olabilir.
Polietilen oksit veya yüksek molekül arlkl polietilen glikol (LOXANOL PL 5812) süspansiyon polimerizasyonu ile sentezlenir. Çoklu younlama ilemi boyunca büyüyen polimer zincirinin çözeltide tutulmas gereklidir. Reaksiyon, magnezyum, alüminyum veya kalsiyum organoelement bileikleri ile katalize edilir. Dimetilgloksim gibi krpma katklar, polimer zincirlerinin çözülmesini önlemek için kullanlr.
Alkalin katalizörler, sodyum hidroksit (NaOH), potasyum hidroksit (KOH) veya sodyum karbonat (Na2C03) gibi düük molekül arlkl bir polietilen glikol (LOXANOL PL 5812) hazrlamak için kullanlr.
LOXANOL PL 5812 (Polietilen Glikol) Kullanm Alanlar
PEG hidrofilik molekül olduundan, tek moleküllü flüoresans çalmalarnda proteinlerin spesifik olmayan yapmasn önlemek için mikroskop cam slaytlarn pasifletirmek için kullanlr. Polietilen glikol (LOXANOL PL 5812), toksisitesi düüktür ve çeitli ürünlerde kullanlr. Polimer, sulu ve sulu olmayan ortamlarda çeitli yüzeyler için yalayc bir kaplama olarak kullanlr. PEG, esnek, suda çözünür bir polimer olduundan, çok yüksek ozmotik basnçlaroluturmak için kullanlabilir. Polietilen glikol (LOXANOL PL 5812), gaz kromatografisi için polar duraan bir fazn yan sra elektronik test cihazlarnda bir s transfer svs olarak yaygn olarak kullanlr . Polietilen glikol (LOXANOL PL 5812), kütle spektrometri deneylerinde, doru ve tekrarlanabilir ayarlamaya izin veren karakteristik parçalanma modeliyle sklkla kullanlr. Dar alanl etoksilatlar gibi Polietilen glikol (LOXANOL PL 5812) türevleri yüzey aktif maddeler olarak kullanlr . Polietilen glikol (LOXANOL PL 5812) baz polimerler oluturmak için kullanlan amfifilik blok kopolimerlerin hidrofilik blou olarak kullanlmtr .
Polietilen glikol (LOXANOL PL 5812) bir dizi müshilatin temelidir . Polietilen glikol (LOXANOL PL 5812) ve ilave elektrolitler ile tüm barsak sulama , cerrahi veya kolonoskopi öncesi barsak hazrl için kullanlr . Polietilen glikol (LOXANOL PL 5812) birçok farmasötik ürünlerde bir eksipiyan olarak da kullanlr . Çeitli protein ilaçlarna balandnda , polietilen glikol (LOXANOL PL 5812), tanan proteinin kandaki yavalatlmasna izin verir.
Polietilen glikol (LOXANOL PL 5812), oldukça kalabalk hücresel koullar taklit etmek için in vitro deneylerde yaygn olarak kalabalk ajan olarak kullanlr. Polietilen glikol (LOXANOL PL 5812), yaygn olarak plazmid DNA izolasyonu ve protein kristallemesi için bir çökelti maddesi olarak kullanlr . Protein kristallerinin X-n krnm , proteinlerin atomik yapsn ortaya çkarabilir. Polietilen glikol (LOXANOL PL 5812), hibridomalar oluturmak için iki farkl hücrenin tipini, çounlukla B-hücrelerini ve miyelomalarn kaynatrmak için kullanlr .
Polietilen glikol (LOXANOL PL 5812) poliollerinden türetilmi polimer parçalar , elastomerik elyaflar ( spandex ) ve köpük yastklar gibi uygulamalar için poliüretanlara esneklik kazandrr . Olarak mikrobiyoloji , Polietilen glikol (LOXANOL PL 5812) çökeltme virüsleri konsantre etmek için kullanlr. Gen terapi vektörleri (virüsler gibi) Polietilen glikol (LOXANOL PL 5812) ile kaplanarak baklk sistemi tarafndan inaktivasyona uramaktan korunur ve onlar organlardan uzaklatrp toksik etki gösterebilecekleri yerlerden hedef alnmasn önleyebilir. Nitrat esteri -plastikletirilmi polietilen glikol (LOXANOL PL 5812) Trident II denizalt frlatmal balistik füze kat roket yaktnda kullanlr.
Polietilen glikol (LOXANOL PL 5812)’in dimetil eterleri , gaz atk akndan karbondioksit ve hidrojen sülfidi çkarmak için kömür yanmas, entegre gazlatrma kombine çevrim (IGCC) santralleri tarafndan kullanlan bir çözücü olan Selexol’ün temel bileenidir .
Polietilen glikol (LOXANOL PL 5812), bir yaltkanda süperiletkenlii indüklemek için bir elektrikli çift katmanl transistörde kap izolatörü olarak kullanlmtr.
Polietilen glikol (LOXANOL PL 5812) ayrca kat polimer elektrolitleri için bir polimer konakç olarak kullanlr. Henüz ticari üretimde olmamasna ramen, dünyadaki pek çok grup, özelliklerini gelitirmeyi ve piller, elektrokromik görüntü sistemleri ve dier ürünlerdeki dier ürünlerin kullanmna izin vermek amacyla Polietilen glikol (LOXANOL PL 5812) içeren kat polimer elektrolitleri üzerine aratrmalar yapmaktadr. gelecei.
Ayrma ekipmannda köpürmeyi azaltmak için endüstriyel proseslere Polietilen glikol (LOXANOL PL 5812) enjekte edilir.
Polietilen glikol (LOXANOL PL 5812), teknik seramiklerin hazrlanmasnda bir balayc olarak kullanlr .
Polietilen glikol (LOXANOL PL 5812) birçok cilt kremlerinin ( cetomakrogol olarak ) ve kiisel yalayclarn (sklkla gliserin ile kombine edilen ) temelidir .
Polietilen glikol (LOXANOL PL 5812), bir dizi di macununda bir dispersan olarak kullanlr . Bu uygulamada, su balar ve ksantan sakznn di macunu boyunca eit dalmda kalmasna yardmc olur .
Polietilen glikol (LOXANOL PL 5812), vücut zrhnda ve eker hastaln izlemek için kullanlan dövmelerde de aratrlyor .
Düük molekül arlkl formülasyonlarda (örn. PEG 400 ), bask kafalar için bir mürekkep solventi ve yalayc olarak tasarm jeti yazclarnda kullanlr .
LOXANOL PL 5812 (Polietilen Glikol), etilen oksit ile suyun mono etilen glikolun veya dietilen glikolun polimerizasyonu neticesinde elde edilir. PEG olarak ksaltlan LOXANOL PL 5812 (Polietilen Glikol)un ayn zamanda poli oksietilen veya poli etilen oksit olarak adlandrmalar da mevcuttur. Suda çözünebilen ve zehirli olmayan sentetik polieterdir.
LOXANOL PL 5812 (Polietilen Glikol), ester üretiminde alkol komponenti, ve bazik boyalar ve baz boya bazlar için etkili çözücülerdir. LOXANOL PL 5812 (Polietilen Glikol), fleksografik mürekkeplerde bazik boyalar için solvent olarak, boya ve seramik endüstrisinde çözücü ve datc olarak kullanlmaktadr. LOXANOL PL 5812 (Polietilen Glikol), yüksek kapatlckla mürekkepleri formüle etmek için ofis tedarik endüstrisinde de kullanlr.
Polietilen glikol (LOXANOL PL 5812) (PEG), polieter endüstriyel imalat için, bir çok uygulamada, bileik ilaç . Polietilen glikol (LOXANOL PL 5812) PEG olarak da bilinir, polietilen oksit ( PEO ) ya da polioksietilen ( POE onun bal olarak) , molekül arl . PEG yap, ortak olarak H- (O-CH, olarak ifade edilir 2 -CH 2 ) n- OH.
Polietilen glikol (LOXANOL PL 5812) Mevcut formlar ve isimlendirme
Polietilen glikol (LOXANOL PL 5812) (PEG) , PEO ve POE bir baknz oligomer veya polimer , etilen oksit . Üç isim kimyasal olarak e anlamldr, ama tarihsel Polietilen glikol (LOXANOL PL 5812) (PEG) ise, biyomedikal alanda tercih edilmektedir PEO polimer kimyas alannda daha yaygndr. Farkl uygulamalar farkl polimer zinciri uzunluklar gerektirdiinden, Polietilen glikol (LOXANOL PL 5812) (PEG) 20,000 altnda bir molekül kütlesi olan oligomerleri ve polimerleri belirtmek için eilimindedir g / mol, PEO, 20,000 üzerinde bir molekül kütlesi olan polimerlere g / mol, ve POE bir moleküler kütleye sahip bir polimere . Polietilen glikol (LOXANOL PL 5812) (PEG)’ler polimerizasyonu ile hazrlanrlar , etilen oksit ve 300 moleküler arlklar geni bir aralk üzerinde ticari olarak mevcuttur 10,000,000 g / mol g / mol.
Polietilen glikol (LOXANOL PL 5812) (PEG) ve PEO onlarn bal olarak, svlar veya düük scaklkta eriyen katlar olduklar , moleküler arlklar . Farkl moleküler arlklara sahip, Polietilen glikol (LOXANOL PL 5812) (PEG) ve PEO farkl uygulamalarda kullanlan ve farkl fiziksel özelliklere (örn varken viskozite nedeniyle zincir uzunluu etkilerine bal olarak), kimyasal özellikleri hemen hemen ayndr. Polietilen glikol (LOXANOL PL 5812) (PEG) farkl ekilleri bal olarak da mevcuttur balatc polimerizasyon ilemi için kullanlan – en yaygn balatc eter Polietilen glikol (LOXANOL PL 5812) (PEG) ya da metoksipoli (etilen glikol), ksaltlm Polietilen glikol (LOXANOL PL 5812) (PEG) bir tek ilevli metildir. Düük molekül arlkl Polietilen glikol (LOXANOL PL 5812) (PEG)’ler olarak tek dalml, tekdüze veya ayrk anlan da saf oligomerler olarak mevcuttur. Çok yüksek saflkta Polietilen glikol (LOXANOL PL 5812) (PEG) son X-n krnm ile kristal yapsnn belirlenmesini salayan, kristal yapl olduu gösterilmitir. Saf oligomerlerin saflatrlmas ve ayrlmas zor olduu için, kalite bu tip fiyat polidispers Polietilen glikol (LOXANOL PL 5812) (PEG) olduu 10-1000 kat genellikle.
Polietilen glikol (LOXANOL PL 5812) (PEG)’ler ayn zamanda farkl geometriye sahip bulunmaktadr.
Dall Polietilen glikol (LOXANOL PL 5812) (PEG)’ler, merkezi bir çekirdek grubundan kaynaklanan üç ila on Polietilen glikol (LOXANOL PL 5812) (PEG) zincirlerine sahiptir.
Yldz Polietilen glikol (LOXANOL PL 5812) (PEG)’ler bir merkezi çekirdek grubundan çkan 10 ila 100, Polietilen glikol (LOXANOL PL 5812) (PEG) zincirlerine sahiptir.
Tarak Polietilen glikol (LOXANOL PL 5812) (PEG)’ler birden fazla Polietilen glikol (LOXANOL PL 5812) (PEG) zincirleri, normalde bir polimer omurgas üzerine alanm sahiptir.
Genellikle Polietilen glikol (LOXANOL PL 5812) (PEG)’lerin isimlerine dahil edilmitir numaralar, bunlarn ortalama molekül (örnein, bir Polietilen glikol (LOXANOL PL 5812) (PEG) arlklar göstermektedir = 9 n , yaklak 400 arasnda bir ortalama molekül arlna sahip olacaktr dalton ve iaretlenmi olacaktr Polietilen glikol (LOXANOL PL 5812) (PEG) 400 ). En çok Polietilen glikol (LOXANOL PL 5812) (PEG) dalm ile molekülleri içerir molekül arlklar (yani çok danktrlar). Boyut dalm olan istatistiksel karakterize edilebilir arlkça ortalama molekül arl (Mw) ve say ortalama moleküler arl olarak adlandrlr oran olan (Mn), polidispersite indeksi (Mw / Mn). Mw ve Mn ölçülebilir kütle spektrometrisi .
Polietilen glikol (LOXANOL PL 5812) (PEG)ilasyon kovalent baka bir büyük için bir Polietilen glikol (LOXANOL PL 5812) (PEG) yaps balama eylemidir molekülü , örnein, bir terapötik protein daha sonra u ekilde ifade edilir, Polietilen glikol (LOXANOL PL 5812) (PEG)’lenmi protein. nterferon alfa-2a Polietilen glikol (LOXANOL PL 5812) (PEG)’lenmi veya 2b için yaygn olarak kullanlan bir enjekte edilebilir tedaviler hepatit C enfeksiyonu.
Polietilen glikol (LOXANOL PL 5812) (PEG) içinde çözünür olan , su , metanol , etanol , asetonitril , benzen ve diklorometan ve çözünmez olan , dietil eter ve heksan . yonik olmayan üretilmesi için, hidrofobik moleküllere balanmtr yüzey aktif .
Polietilen glikol (LOXANOL PL 5812) (PEG)’ler potansiyel örnein etilen oksit ve benzeri gibi toksik kirleri içeren 1,4-dioksan . Etilen Glikol ve eterlerdir nefrotoksik zarar görmü cildin uygulandnda.
Polietilen glikol (Polietilen glikol (LOXANOL PL 5812) (PEG)) ve ilgili polimerler (Polietilen glikol (LOXANOL PL 5812) (PEG) fosfolipid yaplan) sklkta sonike biyomedikal uygulamalarda kullanldnda. Murali tarafndan rapor Ancak, et al., Polietilen glikol (LOXANOL PL 5812) (PEG), memeli hücreleri için toksik olabilir sonolytic bozulmas ve Polietilen glikol (LOXANOL PL 5812) (PEG) bozunma ürünlerine çok hassastr. Nedenle, nihai malzeme deney sonuçlarna eserler tantabilirsiniz belgesiz kirletici içermediinden emin olmak için potansiyel Polietilen glikol (LOXANOL PL 5812) (PEG) bozulmasn deerlendirmek zorunludur.
Polietilen glikol (LOXANOL PL 5812) (PEG) ve metoksipolietilen glikol tarafndan üretilmektedir Dow Chemical ticari ismi altnda Carbowax endüstriyel kullanm için, ve Carbowax Sentry gda ve farmasötik kullanm için. Ad aadaki bir dizi ile gösterildii gibi onlar, molekül arlna bal olarak, sv, kat kvamnda deiir. Bunlar da dahil olmak üzere, çeitli uygulamalarda ticari olarak kullanlan yüzey aktif maddeler , gdalarda üzere kozmetik , farmasötik alanda, içinde biyomedikal , datc maddeler olarak, çözücü madde olarak, içerisinde merhemler , içinde fitil bazlar, tablet olarak yardmc maddeler ve ayn laksatifler . Baz özel gruplar lauromacrogols , nonoxynols , Oktoksinollar ve poloxamerler .
Makrogol laksatif olarak kullanlan, bir polietilen glikol eklidir. Ad (örnein, makrogol 3350, makrogol 4000 veya makrogol 6000) ortalama molekül arln temsil eder, ardndan bir dizi olabilir.
Polietilen glikol (LOXANOL PL 5812) Üretimi
Polietilen glikol üretimi ilk 1859’da Hem bildirilmitir AV Laurence ve Charles Adolphe Wurtz polietilen glikoller olduu, bamsz bir ekilde izole edilmi bir ürün. Polietilen glikol etkileimi ile üretilen etilen oksit , su ile, etilen glikol veya etilen glikol oligomerler. Reaksiyon asidik veya bazik katalizörler ile katalize edilmektedir. Bir düük polimerlerin oluturulmasna olanak salar, çünkü etilen glikol ve bunun oligomerleri, su yerine bir balangç malzemesi olarak tercih edilir polidispersite (dar bir molekül arl dalm). Polimer zinciri uzunluu reaktantlarn oranna baldr.
HOCH 2 , CH 2 , OH + n (CH 2 CH 2 O) → HO (CH 2 CH 2 O) n + 1 ‘H
Katalizör türüne bal olarak, mekanizmas polimerizasyonu , katyonik veya anyonik olabilmektedir. Bu, bir düük olan Polietilen glikol (LOXANOL PL 5812) (PEG) elde edilmesine olanak salar, çünkü anyonik mekanizma tercih edilir polidispersite . Polimerizasyon etilen oksit bir ekzotermik bir süreçtir. Ar snma ya da alkali ya da metal oksitler gibi katalizörler etilen oksit ile kontamine bir kaç saat sonra, bir patlama bitebilir kaçak polimerizasyon, yol açabilir.
Polietilen oksit, veya yüksek moleküler arlkl polietilen glikol, sentezlenir süspansiyon polimerizasyonu . Büyüyen polimer zinciri tutmak için gerekli olan çözelti srasnda polikondansasyon ilemi. Reaksiyon magnezyum-, alüminyum- ya da kalsiyum-organoelement bileikleri ile katalize edilmektedir. Önlemek için phtlama gibi katk maddeleri, kenetleme çözeltiden polimer zincirlerinin dimetilglioksim kullanlr.
Gibi alkalin katalizörler , sodyum hidroksit (NaOH), potasyum hidroksit (KOH), ya da sodyum karbonat (Na 2 CO 3 ) düük molekül arlkl bir polietilen glikol hazrlamak için kullanlr.
Polietilen glikol (LOXANOL PL 5812) Tbbi kullanmlar
Ana madde: Macrogol
Polietilen glikol (LOXANOL PL 5812) (PEG), bir dizi temelidir laksatifler . Tüm barsak sulama polietilen glikol ve eklenen elektrolitler önce barsak hazrlanmas için kullanlan cerrahi veya kolonoskopi .
Yan sra, Polietilen glikol (LOXANOL PL 5812) (PEG), bir ekilde kullanlan yardmc madde pek çok farmasötik ürünlerde.
Çeitli protein balandnda ilaçlar , polietilen glikol kandan tanan proteinin bir yavalama temizlenmesini salar.
Polietilen glikol (LOXANOL PL 5812) (PEG) sinir hücrelerini kaynatrmak için kullanlabilecek ihtimali okuyan aratrmaclar tarafndan aratrlmaktadr omurilik yaralanmas .
Polietilen glikol (LOXANOL PL 5812) Kimyasal kullanmlar
16. yüzyl kalntlar Carrack Mary Rose 1980’lerde Polietilen glikol (LOXANOL PL 5812) (PEG) ile koruma tedavi gören orijinal rengin izlerini yok pimi toprak savaç Polietilen glikol (LOXANOL PL 5812) (PEG) olduu için hidrofilik molekülü, tek-molekül floresan çalmalarnda proteinlerin spesifik olmayan yapmasn önlemek için cam mikroskop slayt pasifletiren için kullanlmtr.
Polietilen glikol, düük toksisiteye sahiptir ve çeitli ürün kullanlr. polimer, sulu ve sulu olmayan ortamlarda çeitli yüzeyler için bir yalama kaplama olarak kullanlr.
Polietilen glikol (LOXANOL PL 5812) (PEG), esnek, suda çözünür bir polimer olduu için, çok yüksek oluturmak için kullanlabilir ozmotik basnçlar (atmosfer onlarca civarnda). Ayn zamanda biyolojik kimyasallarla belirli etkileimleri olma ihtimali yoktur. Bu özellikler, ozmotik basnç uygulamak için en faydal moleküllerin Polietilen glikol (LOXANOL PL 5812) (PEG) hale biyokimya ve biyomembranlar kullanldnda, özellikle de deney ozmotik stres teknii .
Polietilen glikol, ayn zamanda genel olarak bir polar bir sabit faz olarak kullanlr, gaz kromatografisi gibi bir s transfer svs , elektronik kontrol cihazlar.
Yan sra, Polietilen glikol (LOXANOL PL 5812) (PEG) sava gemisi ile olduu gibi, su alt kurtarlm olan nesneleri korumak için kullanlmtr Vasa Stockholm, ve benzeri durumlarda. Bu ahap boyutsal olarak sabit hale ve çözgü önlenmesi veya kuruduunda ahap daralma, ahap nesneler su yerine geçer. Buna ek olarak, Polietilen glikol (LOXANOL PL 5812) (PEG) ile çalrken kullanlan yeil ahap bir stabilizatör olarak ve büzülmesini engellemek üzere.
Polietilen glikol (LOXANOL PL 5812) (PEG) boyal renklerini korumak için kullanlmtr Terra-Cotta Warriors Çin’de UNESCO Dünya Miras yerinde ortaya çkarld. u duvardaki eserler Çin i Huang Di hanedannn (Çin’in ilk imparatoru) srasnda yaratld. Terra-cotta parçalarnn 15 saniye kaz srasnda ortaya çkarlan içinde, boyann altndaki lak kuru Xian havaya maruz brakldktan sonra, kvrlmaya balyor. Boya sonradan yaklak dört dakika içinde pul pul olur. Alman Bavyera Eyalet Koruma Dairesi Polietilen glikol (LOXANOL PL 5812) (PEG) derhal ortaya çkarld eserler uygulandnda kil askerlerin parçalar üzerinde boyal renkler korunmasnda destekli ettiini koruyucu madde gelitirdi.
Polietilen glikol (LOXANOL PL 5812) (PEG), sk sk (bir iç kalibrasyon bileii olarak) kullanldnda kütle spektrometrisi , doru ve tekrarlanabilir bir ayarlama salayan karakteristik parçalanma desenli, deneyler.
Gibi Polietilen glikol (LOXANOL PL 5812) (PEG) türevleri, dar aralk etoksilatlar , olarak kullanlan yüzey aktif maddeler .
Polietilen glikol (LOXANOL PL 5812) (PEG) olan poliol ve bir ile reaksiyona sokulabilir izosiyanat yapmak için poliüretan .
Polietilen glikol (LOXANOL PL 5812) (PEG), hidrofilik blok olarak kullanlmtr amfifilik blok kopolimerleri baz oluturmak için kullanlan polymersomes.
Polietilen glikol (LOXANOL PL 5812) Biyolojik kullanmlar
Polietilen glikol (LOXANOL PL 5812) (PEG), yaygn olarak yüksek oranda kalabalk hücre koullar taklit edecek ekilde in vitro deneylerde bir kalabalk bir madde olarak kullanlr.
Polietilen glikol (LOXANOL PL 5812) (PEG), yaygn olarak bir olarak kullanlan çökeltici plazmid DNA izolasyonu ve için , protein kristalletirme . X-n difraksiyon protein kristalleri proteinlerinin atom yaps ortaya çkarabilir.
Polietilen glikol (LOXANOL PL 5812) (PEG) oluturmak için genellikle iki farkl hücre tipleri, B-hücreleri ve myelomalar içermektedir kaynatrmak için kullanlr hibridomalar . Cesar Milstein ve Georges JF Köhler kazanan, bu, antikor üretimi için kullanlr, bu teknik, kökenli Fizyoloji ve Tp Nobel 1984.
Polietilen glikol (LOXANOL PL 5812) (PEG), elde edilen polimer segmentleri polioller esneklik kazandrmak poliüretanlar gibi elastomerik gibi uygulamalar için fiberlerin ( spandeks ) ve köpük yastklar.
Olarak mikrobiyoloji , Polietilen glikol (LOXANOL PL 5812) (PEG) çökeltme virüsleri konsantre etmek için kullanlr. Yan sra, Polietilen glikol (LOXANOL PL 5812) (PEG) yeniden lipozomlar içinde (her iki iç ve d yaprakçklarn kartrma) tam füzyon uyarmak üzere kullanlan in vitro .
Gen terapisi (virüsler gibi) vektörler immün sistemi tarafndan inaktivasyona bunlar korumak ve bunu oluturmak ve toksik bir etkiye sahip olabilir organlardan bunlar de-hedeflemek için, Polietilen glikol (LOXANOL PL 5812) (PEG)-kapl olabilir. Polietilen glikol (LOXANOL PL 5812) (PEG) polimeri büyüklüü en iyi baklk koruma etkisi daha büyük polimerler ile, önemli olduu gösterilmitir.
Polietilen glikol (LOXANOL PL 5812) (PEG), bir bileenidir sabit nükleik asit lipid parçacklar paketlemek için kullanlan (SNALPs) siRNA’y kullanm için in vivo .
Olarak kan bankacl , Polietilen glikol (LOXANOL PL 5812) (PEG) olarak kullanlan güçlendirici tespitini arttrmak için antijenler ve antikorlar .
Çalrken fenol laboratuar koullarnda, Polietilen glikol (LOXANOL PL 5812) (PEG) 300 herhangi bir kalnt fenol devre d brakmak için fenol cilt üzerinde yanklar kullanlabilir.
Gelen biyofizik sulu çözeltiler içinde bir küresel bir ekle sahiptir ve iyon kanal iletkenlii engelleyebildii için, polietilen glikoller, ileyen iyon kanallar çapl çalmalar için tercih edilen moleküllerdir.
Polietilen glikol (LOXANOL PL 5812) Ticari kullanmlar
Polietilen glikol (LOXANOL PL 5812) (PEG) birçok temelidir cilt kremleri (olarak setomakrogol ) ve kiisel kayganlatrc (sklkla kombine gliserin ).
Polietilen glikol (LOXANOL PL 5812) (PEG), bir dizi kullanlr di macunu bir ekilde datc . Bu uygulamada, bu suyu balar ve tutmaya yardmc ksantan zamk eit di macunu boyunca datlm.
Polietilen glikol (LOXANOL PL 5812) (PEG), kullanm için aratrlmaktadr da vücut zrh , ve dövme izlemek için diyabet .
Düük olarak molekül arlkl formülasyonlar (örnein, Polietilen glikol (LOXANOL PL 5812) (PEG) 400 ), bu kullanlan Hewlett-Packard designjet yazclar bask kafalar için bir mürekkep solvent ve yalama maddesi olarak.
Yan sra, Polietilen glikol (LOXANOL PL 5812) (PEG) ana unsurlarndan biridir Paintball çünkü kalnl ve esneklii, dolgular. Ancak, 2006 yl balarnda gibi baz paintball üreticileri Polietilen glikol (LOXANOL PL 5812) (PEG) için ucuz ya bazl alternatifleri ikame balad.
Polietilen glikol (LOXANOL PL 5812) (PEG), ayn zamanda gda, bir anti-köpük maddesi olarak kullanlmaktadr – kendi INS says 1521 ya da AB E1521 olduu.
Polietilen glikol (LOXANOL PL 5812) Endüstriyel kullanm alanlar
Bir nitrat ester, -plasticized polietilen glikol ( Nepe-75 ) kullanld Trident II denizalt frlatlan füze kat roket yakt.
Polietilen glikol (LOXANOL PL 5812) (PEG) dimetil eterleri temel bileendir SELEXOL , tarafndan kullanlan bir çözücü kömür -burning, entegre gazlatrma kombine çevrim (IGCC) santralleri uzaklatrmak için karbon dioksit ve hidrojen sülfid gaz atk.
Polietilen glikol (LOXANOL PL 5812) (PEG), bir yaltkan olarak süperiletkenlii indükleme elektrikli çift katmanl transistor gate izolatör olarak kullanlmtr.
Polietilen glikol (LOXANOL PL 5812) (PEG), ayn zamanda, kat polimer elektrolit için bir polimer ana olarak kullanlr. henüz ticari üretiminde de, dünyann pek çok grup, ve pil, elektro-kromik görüntüleme sistemlerinde bunlarn kullanmna izin veren bunlarn özelliklerini iyiletirmek amacyla, Polietilen glikol (LOXANOL PL 5812) (PEG) içeren kat polimer elektrolit ile ilgili aratrma yapan ve dier ürünler vardr gelecei.
Polietilen glikol (LOXANOL PL 5812) (PEG) ayrma donanmlar köpük azaltlmas için endüstriyel ilemler enjekte edilir.
Polietilen glikol (LOXANOL PL 5812) (PEG) olarak kullanlan balayc teknik hazrlanmasnda seramik .
Polietilen glikol (LOXANOL PL 5812) Salk etkileri
Polietilen glikol (LOXANOL PL 5812) (PEG), genel olarak, biyolojik olarak eylemsiz ve güvenli olarak kabul edilir. Ancak, klinik güvenlik çalmalar genelde yetikinler deil, çocuklar dayanmaktadr. FDA çocuklar için müshil içinde Polietilen glikol (LOXANOL PL 5812) (PEG) olas etkilerini aratrmak için istendi. Ayrca, insanlarn bir aznlk olarak alerjik ona. Bir kiinin ilenmi gdalar, kozmetikler, ilaçlar, Polietilen glikol (LOXANOL PL 5812) (PEG) içerenler veya Polietilen glikol (LOXANOL PL 5812) (PEG) ile imal edilen dier maddeler de dahil olmak üzere görünüte alakasz ürünler, giderek artan sayda kar alerji tehisi sonra Polietilen glikol (LOXANOL PL 5812) (PEG) alerjisi genellikle kefedilir.
Ayrca baknz: Çoklu Kimyasal Duyarllk
Polietilen glikol (LOXANOL PL 5812) (PEG), kimyasal olarak (örnein, protein ilaçlar veya nano-tanecikleri gibi) tedavi edici moleküllerin bal olduu zaman, bazen baz hastalarda bir anti-Polietilen glikol (LOXANOL PL 5812) (PEG) antikor tepkisi uyarma, antijenik olabilir. Bu etki sadece mevcut olan birçok Polietilen glikol (LOXANOL PL 5812) (PEG)ile tedavilerin birkaç için gösterilen, ancak etkilenen hastalarn klinik sonuçlar üzerinde önemli etkilere sahiptir. Hastalar, anti-Polietilen glikol (LOXANOL PL 5812) (PEG) immün yantlar vardr, bu birkaç örneini dnda, genel olarak ilaç formülasyonlarnn güvenli bir bileen olduu kabul edilir.
Polietilen glikol (LOXANOL PL 5812), endüstriyel üretimden ilaca kadar birçok uygulamaya sahip bir polieter bileiidir. Polietilen glikol (LOXANOL PL 5812) moleküler arlna bal olarak polietilen oksit veya polioksietilen olarak da bilinir. Polietilen glikol (LOXANOL PL 5812)’nin yaps yaygn olarak H – ₙ – OH olarak ifade edilir.
Polimerizasyon derecesi olan n, her ürünün ortalama molar kütlesini ve gösterdii özellikleri belirler.
Polietilen glikol (LOXANOL PL 5812) Kullanm Alanlar
-PEG 200-300-400-600 ; mineral ya,tekstil,deri,metal ve deterjan sanayilerinde wax, parafin ve çözgen emülsiyonlarnda emülgatör, ara çözücü,vizkozite ayarlayc,nemlendirici, ester üretiminde alkol komponenti olarak kullanlmaktadr.Boya aaç kozmetik temizlik ve deri sektörlerinde kullanlmaktadr.
Polietilen glikol (LOXANOL PL 5812)
-PEG 1000-1500-4000-6000-8000-9000-12000 çok çeitli sanayilerde emülgatör, yalayc ve kalp ayrc olarak kullanlmaktadr.
-Çözücü , datc olarak kullanlr.
-Viskozite ayarlayc olarak kullanlr.
-Kauçuk endüstrisinde kullanlr.
-Plastikletirici ,nem giderici ve emdirme ajan olarak kullanlmaktadr.
-Yalayc ve kalp ayrc olarak kullanlmaktadr.
-Kimyasal sentezlerde ara madde olarak kullanlmaktadr.
-Elektrolik kaplama ilemlerinde kullanlmaktadr.
-Kat deterjan konsantreleri mum boyalar sulu boyalarda kullanlr.
Polietilen glikol (LOXANOL PL 5812) (PEG), endüstriyel alandan ilaca kadar çok fazla uygulama alan olan bir polieter bileiidir. Polietilen glikol (LOXANOL PL 5812) (PEG) moleküler arlna bal olarak polietilen oksit (PEO) yada polioksietilen (POE) olarak da bilinir. Polietilen glikol (LOXANOL PL 5812) (PEG)’nin yaps genel olarak H(OCH2CH2)nOH olarak gösterilir. Polietilen glikol (LOXANOL PL 5812) (PEG), bir sra laksatifin esasna dayanan bir bileiktir.Polietilen glikol ve ilave edilen elektrolitler ile tüm barsak irrigasyonu ameliyat yada kolonoskopi öncesi barsak hazrl için kullanlr.
Polietilen glikol (LOXANOL PL 5812) (PEG) çok çeitli farmasötik üründe bir ilaç katk maddesi olarak kullanlr.
Birçok protein içerikli farmasötiklere balandnda, polietilen glikol transfer proteinin kandan yava olarak temizlenmesini salar.
Ayrca Polietilen glikol (LOXANOL PL 5812) (PEG)’nin aksonlar kaynatrmak için kullanlabilme olasl periferik sinir ve omurilik yaralanmas üzerine çalan aratrmaclar tarafndan aratrlmaktadr.
Polietilen glikol (LOXANOL PL 5812) (PEG) suyu seven (hidrofilik) bir bileik olduundan, tek moleküllü floresan aratrmalarnda proteinlerin spesifik olmayan yapmasn engellemek için mikroskop cam slaytlarn pasifize etmek için kullanlmtr.
Polietilen glikol (LOXANOL PL 5812) (PEG) düük bir zehirlilik oranna sahiptir ve birçok alanda kullanlr. Polimer, sulu ve susuz ortamlarda çeitli yüzeyler için yalayc bir kaplama olarak kullanlr.
Polietilen glikol (LOXANOL PL 5812) (PEG) gaz kromatografisinde polar olan bir durgun fazn haricinde elektronik test cihazlarnda bir s transfer ajan olarak da kullanlr. Mikrobiyoloji biliminde , virüsleri konsantre etmek için Polietilen glikol (LOXANOL PL 5812) (PEG) çökeltisi kullanlr. Deneysel çalmalarda fenol ile çalrken, herhangi bir artk fenolü ortamdan uzaklatrmak için fenol cilt yanklarnda PEG 300 formuyla kullanlabilir. PEG, çok büyük boyutlu sabun köpüünün mukavemetini arttrmak için kullanlr. Ve birçok kiisel yalama maddesinin de temel bileenidir.
Polietilen glikol (LOXANOL PL 5812), Cildin tabii nem deerini çoaltabilen ve azaltabilen, potansiyel olarak kanserojen olan petrolium katk maddesidir. Polietilen glikol (LOXANOL PL 5812) cildin yal görünümünü artrr ve bakterilere kar daha fazla savunmasz duruma sokar. Sv ve kat yalar çözmek için temizlik ürünlerinde kullanlr. PEG’ler (Polietilen Glikol olarak da bilinir.) kozmetik ve kiisel bakm ürünlerinde sklkla kullanlan sentetik kimyasal bileiklerdendir. PEG’ler genellikle etilen oksit ve 1,4 dioksan kullanlarak üretilir. Etilen oksit bilinen bir kanserojendir, insan geliimini engelleyebilir ve sinir sistemine zarar verebilir. 1,4 dioksan kanserojen riski içerir ve çevresel bir toksindir.
Polietilen glikol (LOXANOL PL 5812)’ler genellikle, PEG-7 veya PEG-80 eklinde belirtilir. Buradaki say kaç birim etilen glikol içerdiini gösterir. Say ne kadar düükse cilde o kadar kolay emilir.
Polietilen glikol (LOXANOL PL 5812)’lerin bir dier dezavantaj da penetrasyon arttrcdr ve zararl bileenlerin cilt yoluyla daha kolay emilmesine izin verir. Tüketiciler bu riskleri almamak istiyorlarsa; PEG içermeyen ürünler tercih etmeli; bunun için de ürün etiketlerini dikkatli okumal ve PEG içerikli kozmetik ürünlerden kaçnmaldrlar.
Nem tutucu, nemlendirme ve datma ajan, petrol bazl; krem merhem, kozmetik ve saç bakm ürünlerinde kullanlan Polietilen Glikol (PEG) hakknda bilgi. (polyethylene glycol, PEG, poly(oxyethylene), polyglycol, polyether glycol)
Polietilen glikol (LOXANOL PL 5812) Özellikleri: Molekül arl aral 200 den 6000 e kadardr.Özellikleri ve kullanm alanlar, molekül arlna göre deiim gösterir.(Örnek, PEG300, PEG400 vb.) Temiz, renksiz, kokusuz ve viskoz bir svdr. Su, pek çok alkol ve organik solventlerle belirli oranlarda karabilir ve de çözünebilir. Pek çok kimyasal aanda inört tür. Polietilen glikol (LOXANOL PL 5812) Düük buhar basnçlarnda hizrolize olmaz ya da bozunmaz. Nem tutucu, nemlendirme ve datma ajan, petrol bazldr.
Polietilen glikol (LOXANOL PL 5812) Kullanm Alanlar: Molekül arlna göre kullanm alanlarda deiiklik gösterir. Polietilen glikol (LOXANOL PL 5812) Belli bal kullanm alanlar; plastikletirici ve yumuatc olarak salk ve kozmatik sektöründe merhem, krem vb. preparatlarda, cila, kat kaplama, makine ve kalp yalarnda, solvent ve binderlerde, izin verilen miktarlarda gda sektöründe kullanlmaktadr. Polietilen glikol (LOXANOL PL 5812) Genellikle krem merhem, kozmetik ve saç bakm ürünlerinde kullanlr.
PEG 200,300,400 ve 600 sulu formülasyonlarda yüzey aktif karmlarn çözmek için temizleyici endüstrisinde ve deterjanlarda kullanlrlar. Polietilen glikol (LOXANOL PL 5812) çeitleri, yüksek solvent gücüne ve pigment ve boyalarn bir çoklar için datc kapasiteye sahiptir ve bazik boyalar ve baz boya bazlar için etkili çözücülerdir. Polietilen glikol (LOXANOL PL 5812) Yüksek kapatlckla mürekkepleri formüle etmek için ofis tedarik endüstrisinde kullanlrlar. Mürekkebin younluu kat ve sv Polietilen glikol (LOXANOL PL 5812) çeitlerinin karm kullanlarak kontrol altna alnabilir. Polietilen glikol (LOXANOL PL 5812) çeitleri fleksografik mürekkeplerde bazik boyalar için solventler olarak kullanlabilirler. Benzer bir ekilde, sv ve hamur pigment preparatlar, tekstilde hamur koyulatrclar, boya ve saramik endüstrisinde çözücü ve datc ortam olarak kullanlabilirler.
LOXANOL PL 5812 (Polyéthylène Glycol)
On appelle Polyéthylène glycol (LOXANOL PL 5812) ou PEG des polyéthers linéaires de masse molaire inférieure à 20 000 g·mol-1 fabriqués à partir de monomères d’éthylène glycol. Leurs propriétés hydrosolubles et liposolubles en font des produits utilisés dans un grand nombre d’industries (médical, cosmétique, etc.). On les appelle également macrogol dans le domaine médical. On a l’habitude d’indiquer la masse molaire moyenne du polymère après le nom, par exemple PEG-2000 (2 000 g·mol-1).
Lorsque leur masse molaire est supérieure à 20 000 g·mol-1, on les appelle plus communément poly(oxyde d’éthylène) ou poly(oxyéthylène).
Usage du Polyéthylène glycol (LOXANOL PL 5812) comme solvant en chimie
À température ambiante, le Polyéthylène glycol (LOXANOL PL 5812) PEG est un liquide visqueux incolore lorsqu’il a une masse moléculaire inférieure à 600 g·mol-1 et un solide cireux lorsque sa masse moléculaire est supérieur à 800 g·mol-1. Le Polyéthylène glycol (LOXANOL PL 5812) PEG liquide est miscible en toute proportion avec l’eau tandis que le Polyéthylène glycol (LOXANOL PL 5812) PEG solide est hautement soluble dans l’eau. Le Polyéthylène glycol (LOXANOL PL 5812) PEG de faible masse moléculaire peut donc être utilisé comme solvant polymère, c’est-à-dire un polymère qui agit comme solvant pour des composés de faible masse molaire5, avec ou sans ajout d’eau. Le Polyéthylène glycol (LOXANOL PL 5812) PEG peut ainsi dissoudre des sels inorganiques divers par complexation. De plus, la viscosité du Polyéthylène glycol (LOXANOL PL 5812) PEG diminue lorsque la température augmente. Pour le Polyéthylène glycol (LOXANOL PL 5812) PEG-1000, la température de fusion se situe vers 35-40 °C, et pour le PEG-2000, la température de fusion se situe vers 44-45 °C.
Solubilité du Polyéthylène glycol (LOXANOL PL 5812)
Le Polyéthylène glycol (LOXANOL PL 5812) PEG est soluble dans l’eau, le toluène, le dichlorométhane, l’alcool et l’acétone mais n’est pas soluble dans les hydrocarbures aliphatiques comme l’hexane, le cyclohexane ou le diéthyléther. Le Polyéthylène glycol (LOXANOL PL 5812) PEG dans l’eau peut être considéré comme un cosolvant de l’eau qui fait baisser la polarité de la solution pour permettre une meilleure solubilité des produits organiques. La faible solubilité des réactifs organiques et de leurs intermédiaires dans l’eau est le principal obstacle au développement de la chimie en milieu aqueux. De plus, le Polyéthylène glycol (LOXANOL PL 5812) PEG peut être récupéré d’une solution aqueuse avec un solvant adéquat ou par distillation.
Le Polyéthylène glycol (LOXANOL PL 5812) PEG 400 permet une haute solubilité des sels comme CH3COOK, KI, KNO3, KCN, K2CrO7 et peut donc être utilisé pour des réactions d’oxydation et de substitution.
Les catalyseurs de transfert de phase (PTC) sont utilisés pour transporter un réactif aqueux dans la phase organique dans un état activé la réaction peut avoir lieu entre un réactif aqueux et un réactif organique. Le Polyéthylène glycol (LOXANOL PL 5812) PEG a la capacité de servir comme PTC car les chaînes polyéthylène peuvent former des complexes avec les cations métalliques comme les éthers couronnes. Les solutions de Polyéthylène glycol (LOXANOL PL 5812) PEG ont une habilité à coordonner les cations. Pour maintenir l’électroneutralité des complexes Polyéthylène glycol (LOXANOL PL 5812) PEG-cations métalliques doivent apporter un équivalent d’anion dans la phase organique et rendent l’anion disponible pour la réaction avec les réactifs organiques. L’activité catalytique du Polyéthylène glycol (LOXANOL PL 5812) PEG dépend de la masse moléculaire et de la nature des cations et des anions. Le Polyéthylène glycol (LOXANOL PL 5812) PEG et de nombreux dérivés ont été utilisés comme PTC pour remplacer les PTC onéreux et toxiques. Le Polyéthylène glycol (LOXANOL PL 5812) PEG est moins cher que les éthers couronnes, les cryptants et plus stable aux hautes températures. Pour ces différentes raisons, le Polyéthylène glycol (LOXANOL PL 5812) PEG a été utilisé comme PTC dans des SN, des oxydations des réactions de Williamson.
Stabilité chimique du Polyéthylène glycol (LOXANOL PL 5812)
Le Polyéthylène glycol (LOXANOL PL 5812) PEG est stable aux acides, aux bases, à la chaleur, au dioxygène au peroxyde d’hydrogène, aux oxydants et aux réducteurs comme NaBH4 bien qu’une oxydation de l’hydroxyle terminal soit possible dans certains systèmes comme H2O2 ou Na2WO4.
Propriétés environnementales de Polyéthylène glycol (LOXANOL PL 5812)
Le Polyéthylène glycol (LOXANOL PL 5812) PEG n’est pas biodégradable mais bio éliminable par filtration rénale. Le Polyéthylène glycol (LOXANOL PL 5812) PEG est un produit dont les effets de toxicités sont connus. La pression de vapeur est très faible et diminue lorsque la masse moléculaire augmente. Le Polyéthylène glycol (LOXANOL PL 5812) PEG n’est pas inflammable, n’est pas volatil et est considéré par le FDA comme un produit sûr.
Usage industriel du Polyéthylène glycol (LOXANOL PL 5812)
Le Polyéthylène glycol (LOXANOL PL 5812) PEG est utilisé dans de nombreux secteurs de l’industrie. Il sert par exemple comme épaississant ou gélifiant à la base de nombreux produits cosmétiques (savons liquides, crèmes hydratantes, shampoings, etc.) et paramédicaux (gels hydroalcooliques, lubrifiants intimes, etc.). Il est également utilisé comme solvant dans les encres pour imprimantes ou pour fabriquer des billes de paint-ball, ou bien comme additif alimentaire et dans certaines résines polyesters (PEG 400).
Usage comme médicament laxatif du Polyéthylène glycol (LOXANOL PL 5812)
On utilise entre autres des macrogols de haut poids moléculaire comme laxatifs osmotiques en cas de constipation. Il s’agit principalement de macrogol 3350 et de macrogol 4000. Les propriétés laxatives du macrogol sont liées à un accroissement du volume des liquides intestinaux. Les selles étant plus molles car mieux hydratées transitent plus vite dans le côlon et sont plus facilement évacuées.
Contre-indications principales du Polyéthylène glycol (LOXANOL PL 5812)
Comme tous les laxatifs, ils sont à éviter en cas d’obstruction intestinale ou de perforation et dans l’affection du mégacôlon toxique.
Effets secondaires du Polyéthylène glycol (LOXANOL PL 5812)
Diarrhées (il faut alors réduire la dose), allergie au macrogol (arrêt impératif).
Spécialités du Polyéthylène glycol (LOXANOL PL 5812)
Le Polyéthylène glycol (LOXANOL PL 5812) à usage médical est disponible sous diverses dénominations commerciales, mais cependant les médecins et pharmaciens, quel que soit leur pays ainsi que la langue qu’ils parlent, connaissent souvent cette substance sous sa dénomination commune internationale, à savoir le macrogol.
Usage comme préparation colique du Polyéthylène glycol (LOXANOL PL 5812)
On retrouve également le Polyéthylène glycol (LOXANOL PL 5812) PEG (ou macrogol) dans les préparations coliques. Ce dernier a pour rôle d’équilibrer les échanges d’eau car l’objectif est ici de faire un lavage intestinal grâce à une quantité importante de liquide qui transitera sans absorption tout le long du tube digestif.
Recherche d’autres applications médicales du Polyéthylène glycol (LOXANOL PL 5812)
Le Polyéthylène glycol (LOXANOL PL 5812) PEG de haut poids moléculaire, par exemple le PEG 8000 donné per os, est un agent très efficace de prévention du cancer colorectal dans les modèles précliniques6. Dans la base de données de chimioprévention c’est le produit le plus puissant pour inhiber la cancérogenèse induite chimiquement chez le rat. Les essais cliniques n’ayant pas été réalisés on ne sait pas si la prévention du cancer par le Polyéthylène glycol (LOXANOL PL 5812) PEG est possible chez l’homme.
Le Polyéthylène glycol (LOXANOL PL 5812) PEG, injecté au cobaye juste après un traumatisme vertébral, favorise la réparation des membranes nerveuses dans la moelle épinière, et permet une guérison rapide7. On ne sait pas encore si cet effet permettrait de prévenir la paraplégie chez l’Homme.
Le Polyéthylène glycol (LOXANOL PL 5812) PEG est aussi utilisé pour fusionner deux cellules en vue de l’obtention d’hybrides somatiques.
Le Polyéthylène glycol (LOXANOL PL 5812) PEG est utilisé pour augmenter la biodisponibilité de l’interféron dans le cadre du traitement de l’hépatite C8.
Les PEG Polyéthylène glycol (LOXANOL PL 5812)
On appelle Polyéthylène glycol (LOXANOL PL 5812) ou PEG des polymères polyéthers linéaires de faible masse molaire (inférieure à 20 000 g/mol) fabriqués à partir de monomères d’éthylène glycol. Leurs propriétés hydrosolubles en font des produits utilisés dans un grand nombre d’industries (médicale, cosmétique). On les appelle également macrogol dans le domaine médical.
Le PEG est utilisé dans de nombreux secteurs de l’industrie. Il sert par exemple comme épaississant ou gélifiant à la base de nombreux produits cosmétiques (savons liquides, crèmes hydratantes, shampoings) et paramédicaux (gels hydroalcooliques, lubrifiants intimes). Il est également utilisé comme solvant dans les encres pour imprimantes ou pour fabriquer des billes de paint-ball, pour l’antigel, ou bien comme additif alimentaire.
Usage comme médicament laxatif du Polyéthylène glycol (LOXANOL PL 5812)
On utilise entre autres des macrogols de haut poids moléculaire comme laxatifs osmotiques en cas de constipation. Les propriétés laxatives du macrogol sont liées à un accroissement du volume des liquides intestinaux. Les selles étant plus molles car mieux hydratées transitent plus vite dans le côlon et sont plus facilement évacuées.
Mode d’action du Polyéthylène glycol (LOXANOL PL 5812) 3350
Agent osmotique qui favorise la rétention d’eau dans les selles¹ et accroît la fréquence des défécations par ce mécanisme;
Le PEG 3500 et le PEG 4000 sont des polymères solubles non-absorbables et non-métabolisés au poids moléculaire élevé qui forment des liens hydrogènes avec l’eau présente dans l’intestin²;
Branched Polyethylene glycol (LOXANOL PL 5812) PEGs have three to ten Polyethylene glycol (LOXANOL PL 5812) PEG chains emanating from a central core group. Star Polyethylene glycol (LOXANOL PL 5812) PEGs have 10 to 100 Polyethylene glycol (LOXANOL PL 5812) PEG chains emanating from a central core group. Comb Polyethylene glycol (LOXANOL PL 5812) PEGs have multiple Polyethylene glycol (LOXANOL PL 5812) PEG chains normally grafted onto a polymer backbone. The numbers that are often included in the names of Polyethylene glycol (LOXANOL PL 5812) PEGs indicate their average molecular weights (e.g. a PEG with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 400.) Most Polyethylene glycol (LOXANOL PL 5812) PEGs include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). Mw and Mn can be measured by mass spectrometry.
PEGylation is the act of covalently coupling a Polyethylene glycol (LOXANOL PL 5812) PEG structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEGylated protein. Polyethylene glycol (LOXANOL PL 5812) PEGylated interferon alfa-2a or -2b are commonly used injectable treatments for hepatitis C infection.
Polyethylene glycol (LOXANOL PL 5812) PEG is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.
Polyethylene glycol (LOXANOL PL 5812) PEGs potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[35] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin. Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) Polyethylene glycol (LOXANOL PL 5812) Polyethylene glycol (LOXANOL PL 5812) (PEG) and related polymers (PEG phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., Polyethylene glycol (LOXANOL PL 5812) PEG is very sensitive to sonolytic degradation and Polyethylene glycol (LOXANOL PL 5812) PEG degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential Polyethylene glycol (LOXANOL PL 5812) PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.
La pression osmotique élevée dans l’intestin s’oppose à l’absorption de cette eau qui est ainsi retenue dans l’intestin et qui exerce une action tant gonflante qu’émolliente².
Innocuité et tolérabilité du Polyéthylène glycol (LOXANOL PL 5812)
Dans le cadre d’études cliniques, le Polyéthylène glycol (LOXANOL PL 5812) PEG 3350 a été associé aux facteurs suivants :
– Aucune différence significative sur le plan statistique ou clinique des paramètres évalués en laboratoire par rapport au placebo1-4;
– Taux très faible d’événements indésirables, aucune différence avec le placebo dans certaines études1,3;
– Dans une étude, on a observé un taux plus élevé de troubles gastro-intestinaux par rapport au placebo de 39,7 % contre 25,0 % (p = 0,015) : distension abdominale, diarrhée, selles molles, flatulence et nausées4
Le polyéthylène glycol (LOXANOL PL 5812), un puissant suppresseur du cancer colorectal, découvert en étudiant l’effet promoteur des viandes
L’épidémiologie suggère que ceux qui consomment beaucoup de viande rouge ou de charcuteries ont un risque élevé de développer un cancer colorectal. Nous avons étudié l’effet promoteur de régimes riches en viande de bœuf ou en bacon chez le rat. La promotion a été estimée par la taille des foyers de cryptes aberrantes (FCA) induits dans le colon par un cancérigène, l’azoxyméthane. Ces FCA seraient des lésions pré-néoplasiques. Contrairement à nos hypothèses, la viande rouge n’a pas eu d’effet promoteur, mais le bacon a inhibé la cancérogenèse dans 3 études indépendantes. Nos études récentes montrent que l’hème de la viande rouge est un puissant promoteur des FCA, mais uniquement quand le régime contient très peu de calcium et pas d’antioxydants. En étudiant le mécanisme de la protection paradoxale par le bacon, probablement due à la consommation d’eau par les rats, nous avons découvert un nouvel agent de chimioprévention des cancers digestifs, le polyéthylène glycol (LOXANOL PL 5812) (PEG). Le PEG 8000 est l’agent le plus puissant pour supprimer les FCA chez le rat, et seul le célécoxib est plus efficace que le polyéthylène glycol (LOXANOL PL 5812) PEG en prévention des cancers intestinaux. Le PEG n’est ni toxique, ni absorbé. Il devrait donc être étudié dans un essai clinique chez l’Homme.