N-METHYLOLACRYLAMIDE (N-METLOL AKRLAMT)
N-METHYLOLACRYLAMIDE
SYNONYMS; N-(HYDROXYMETHYL)ACRYLAMIDE; N-Methylolacrylamide; 924-42-5; N-Methanolacrylamide; Methylolacrylamide; Monomethylolacrylamide; N-Methylol Acrylamide;
2-Propenamide, N-(hydroxymethyl)-; Uramine T 80; Acrylamide, N-(hydroxymethyl)-; N-Hydroxymethyl acrylamide; N-(Hydroxymethyl)-2-propenamide; NCI-C60333; Hydroxymethylacrylamide; N-MAM; N-(hydroxymethyl)prop-2-enamide; NSC 553; UNII-W8W68JL80Q; N-Methyloacrylamide; Yuramin T 80; CCRIS 2380; HSDB 4361; EINECS 213-103-2; BRN 0506646; METL; AI3-25447; W8W68JL80Q; CHEBI:82492; N-METHYLOL; N-(Hydroxymethyl)acrylamide SOLUTION; W-100289; LS-20; NM-AMD; Methylol acrylamide; ACMC-209rfq; EC 213-103-2; ACRYLAMIDE; N-(hydroxymethyl) acrylamide; SCHEMBL25806; KSC487M3H; NSC553; N-METHYL; CHEMBL1892361; DTXSID3020885; CTK3I7633; METL OL; N-(Hydroxymethyl)acrylamide,98%; NSC-553; KS-00000VA8; N-METL-OL-AKRLAMD; ZINC1555606;
ANW-39828; FCH949792; AKOS006222324; NCGC00163845-01; ACRYL AMIDE; NCGC00163845-02; AK117349; CC-31651; K686; SC-75438; FT-0720637; M0574; NS00008229; METHYLOL; C19456;
A844235; C-33919; Q26840808; N-(Hydroxymethyl)acrylamide solution, 48 wt. % in H2O; TRANSGENIC MODEL EVALUATION (N-METHYLOLACRYLAMIDE); N-METHYLOLACRYLAMIDE (SEE ALSO TRANSGENIC MODEL EVALUATION (N-METHOLOLACRYLAMIDE)); 9045-71-0; N-MAN; NM-AMD; N-MAN PC; uraminet80; Rocagil BT; NCI-C60333; Yuramin T 80; Uramine T 80; METHYLOLACRYLAMIDE; N-Methyloacrylamide; NMA;
2-Propenamide,N-(hydroxymethyl)-; Acrylamide, N-(hydroxymethyl)-; Monomethylolacrylamide; n-(hydroxymethyl)-2-propenamid; n-(hydroxymethyl)-acrylamid; NCI-C60333; NM-AMD; N-Methanolacrylamide; ; N-(HYDROXYMETHYL)ACRYLAMIDE; N-Methylolacrylamide; 924-42-5; N-Methanolacrylamide; Methylolacrylamide; Monomethylolacrylamide; N-Methylol Acrylamide;
2-Propenamide, N-(hydroxymethyl)-; Uramine T 80; Acrylamide, N-(hydroxymethyl)-; N-Hydroxymethyl acrylamide; N-(Hydroxymethyl)-2-propenamide; NCI-C60333; Hydroxymethylacrylamide; N-MAM; N-(hydroxymethyl)prop-2-enamide; NSC 553; UNII-W8W68JL80Q; N-Methyloacrylamide; Yuramin T 80; CCRIS 2380; HSDB 4361; EINECS 213-103-2; BRN 0506646; METL; AI3-25447; W8W68JL80Q; CHEBI:82492; N-METHYLOL; N-(Hydroxymethyl)acrylamide SOLUTION; W-100289; LS-20; NM-AMD; Methylol acrylamide; ACMC-209rfq; EC 213-103-2; ACRYLAMIDE; N-(hydroxymethyl) acrylamide; SCHEMBL25806; KSC487M3H; NSC553; N-METHYL; CHEMBL1892361; DTXSID3020885; CTK3I7633; METL OL; N-(Hydroxymethyl)acrylamide,98%; NSC-553; KS-00000VA8; N-METL-OL-AKRLAMD; ZINC1555606;
ANW-39828; FCH949792; AKOS006222324; NCGC00163845-01; ACRYL AMIDE; NCGC00163845-02; AK117349; CC-31651; K686; SC-75438; FT-0720637; M0574; NS00008229; METHYLOL; C19456;
A844235; C-33919; Q26840808; N-(Hydroxymethyl)acrylamide solution, 48 wt. % in H2O; TRANSGENIC MODEL EVALUATION (N-METHYLOLACRYLAMIDE); N-METHYLOLACRYLAMIDE (SEE ALSO TRANSGENIC MODEL EVALUATION (N-METHOLOLACRYLAMIDE)); 9045-71-0; N-MAN; NM-AMD; N-MAN PC; uraminet80; Rocagil BT; NCI-C60333; Yuramin T 80; Uramine T 80; METHYLOLACRYLAMIDE; N-Methyloacrylamide; NMA;
2-Propenamide,N-(hydroxymethyl)-; Acrylamide, N-(hydroxymethyl)-; Monomethylolacrylamide; n-(hydroxymethyl)-2-propenamid; n-(hydroxymethyl)-acrylamid; NCI-C60333; NM-AMD; N-Methanolacrylamide
Acrylamide reacts readily with formaldehyde to form N-methylolacrylamide (Updegraff et al., 1978). Information available in 1991 indicated that N-methylolacrylamide was produced by two companies in Japan and one each in the Netherlands, the United Kingdom and the USA (Chemical Information Services Ltd, 1991). ln lapan, about 900 tonnes were produced as powder and 250 tonnes as water solution in 1992 (Japan Petrochemical Industry Association, 1993).
N-Methylolacrylamide is a bifunctional monomer with reactive vinyl and hydroxyethyl groups. Thermoplastic polymers can be formed by copolymerization of N-methylolacrylamide with a variety of vinyl monomers by emulsion, solution and suspension techniques. The resulting products, which have pendant hydroxyethyl groups, can undergo cross-linking under moderate conditions, permitting conversion of thermoplastic backbone polymers to thermoset materials at the point of use in the absence of an external cross-linking agent. Conversely, the hydroxyethyl group can be reacted with a substrate like cellulose and subsequently cross-linked by free-radical polymerization (US National Toxicology Program, 1989; American Cyanamid Co., 1990a,b). The uses of N-methylolacrylamide range from adhesives and binders in papermaking and textiles to a variety of surface coatings and resins for varnishes, films and sizing agents (American Cyanamid Co., 1990a,b; Bucher et al., 1990). It can be used in wet-strength and dry-strength agents for paper, in textile finishing agents for crease resistance, in antistatic agents, in dispersing agents, in cross-linking agents and in emulsion polymers.
There are no reported occupational standards or guidelines for N-methylolacrylamide (American Conference of Governmental Industrial Hygienists, 1993; ILO, 1993; UNEP, 1993). The US Food and Drug Administration (1993) permits use ofpolymers ofN-methylolacrylamide in products in contact with food.
Cotton was acrylamidomethylated by applying N-methylol acrylamide to it with the aid of a mild acid catalyst. When the molal ratio of N-methylol acrylamide to anhydroglucose exceeded about 0.2, the efficiency of this reaction was suddenly reduced and the variation of density with addon departed from linearity. These and other available facts indicated that only one of the three hydroxyls in cellulose, probably the one in the 6-position, was involved in the acrylamidomethyl ether formation and that cotton was about 20% accessible to this reagent. When acrylamidomethylated cotton was treated with free radical or alkaline catalysts, the double bonds became partially saturated and the mechanical properties changed in a spectacular manner. In particular, the resilience of the fabric, as measured by crease recovery, was improved. Analysis of double bond reaction at various levels of acrylamidomethyl content of the fabric indicated that free radical catalysis caused homopolymerization of the pendant double bonds, that alkaline catalysis in the presence of water resulted in Michael condensation between double bonds and the hydroxyls of cellulose, and that these two reactions competed with each other when the alkaline aftertreatment was conducted in dry state. These reactions crosslinked the fabric, and the crosslink content could be calculated from the difference of molal methylene and double bond contents.
The crease recovery reached the maximum attainable value characteristic for the method of catalysis when the ratio of accessible anhydroglucose units to crosslinks was 4 to 5. When the crosslinked fabrics were hydrolyzed in acid, the crease recovery increment produced by crosslinking was eliminated after about half of the crosslinks were broken. The residual crosslinks did not contribute to crease recovery. Dry state crosslinking treatments reduced the moisture regain, increased the density, and had no effect on the x-ray pattern. In contrast to this, wet state crosslinking in-increased the moisture regain, changed the x-ray pattern, and, under certain conditions, reduced the density. These results indicate that wet state crosslinking increased the amorphous portion of cotton. Wet state crosslinking lead to higher wet than dry crease recovery whereas the opposite was true for dry state crosslinking. Although the alkaline catalyst did not degrade the fabric, alkali catalyzed crosslinking substantially reduced the tensile strength. Free radical catalysis was more favorable for tensile strength, in spite of the fact that it degraded the fabric in the absence of crosslinking agent.
N-methylol acrylamide) either individually or in combination is chemically modified jute is found to improve or alter the important textile related properties like moisture regain, tensile properties, fabric stiffness, crease recovery angle, shrinkage parameters, and thermal behavior. This leads to reduction in warp-way tenacity.
The polymerization and condensation reaction of N-methylolacrylamide within cotton fabrics in which K2S2O8, (NH4) 2S 2O8, or H2O2 can be used as initiator and NH4 Cl or (NH4 )2HPO4 used as the acid condensation catalyst. Crease recovery and abrasion resistance (flat) of the treated fabric increased with higher value of resin content; tear strength. The effect of the addition of acid catalysts such as NH4Cl on the extent of the crease resistance is considerable, although some marked improvement was obtained in neutral catalysts such as K2S2O8 alone. Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. It is produced industrially as a precursor to polyacrylamides, which find many uses as water-soluble thickeners and flocculation agents. It is highly toxic, likely to be carcinogenic,[6] and partly for that reason it is mainly handled as an aqueous solution.
The discovery in 2002 that some cooked foods contain acrylamide attracted significant attention to its possible biological effects.[7] As of 2019, epidemiological studies suggest it is unlikely that dietary acrylamide consumption increases people’s risk of developing cancer despite it being a probable carcinogen according to IARC, NTP, and the EPA.
Acrylamide is also a skin irritant and may be a tumor initiator in the skin, potentially increasing risk for skin cancer. Symptoms of acrylamide exposure include dermatitis in the exposed area, and peripheral neuropathy.[13]
Laboratory research has found that some phytochemicals may have the potential to be developed into drugs which could alleviate the toxicity of acrylamide
Acrylamide was discovered in foods in April 2002 by Eritrean scientist Eden Tareke in Sweden; she found the chemical in starchy foods such as potato chips (potato crisps), French fries (chips), and bread that had been heated higher than 120 °C (248 °F). Production of acrylamide in the heating process was shown to be temperature-dependent. It was not found in food that had been boiled,[16] or in foods that were not heated.[17]
Acrylamide has been found in roasted barley tea, called mugicha in Japanese. The barley is roasted so it is dark brown prior to being steeped in hot water. The roasting process produced 200–600 micrograms/kg of acrylamide in mugicha.[18] This is less than the >1000 micrograms/kg found in potato crisps and other fried whole potato snack foods cited in the same study and it is unclear how much of this is ingested after the drink is prepared. Rice cracker and sweet potato levels were lower than in potatoes. Potatoes cooked whole were found to have significantly lower acrylamide levels than the others, suggesting a link between food preparation method and acrylamide levels.
Acrylamide levels appear to rise as food is heated for longer periods of time. Although researchers are still unsure of the precise mechanisms by which acrylamide forms in foods,[19] many believe it is a byproduct of the Maillard reaction. In fried or baked goods, acrylamide may be produced by the reaction between asparagine and reducing sugars (fructose, glucose, etc.) or reactive carbonyls at temperatures above 120 °C (248 °F).[20][21]
Later studies have found acrylamide in black olives,[22] dried plums,[23][24] dried pears,[23] coffee,[25][26] and peanuts.[24]
The US FDA has analyzed a variety of U.S. food products for levels of acrylamide since 2002.[27]
According to the EFSA, the main toxicity risks of acrylamide are “Neurotoxicity, adverse effects on male reproduction, developmental toxicity and carcinogenicity”.[28][29] However, according to their research, there is no concern on non-neoplastic effects. Furthermore, while the relation between consumption of acrylamide and cancer in rats and mice has been shown, it is still unclear whether acrylamide consumption has an effect on the risk of developing cancer in humans, and existing epidemiological studies in humans are very limited and do not show any relation between acrylamide and cancer in humans.[28][30] Food industry workers exposed to twice the average level of acrylamide do not exhibit higher cancer rates
Although acrylamide has known toxic effects on the nervous system and on fertility, a June 2002 report by the Food and Agriculture Organization of the United Nations and the World Health Organization attempting to establish basic toxicology (threshold limit value, no-observed-adverse-effect levels, tolerable daily intake, etc.) concluded the intake level required to observe neuropathy (0.5 mg/kg body weight/day) was 500 times higher than the average dietary intake of acrylamide (1 µg/kg body weight/day). For effects on fertility, the level is 2,000 times higher than the average intake.[31] From this, they concluded acrylamide levels in food were safe in terms of neuropathy, but raised concerns over human carcinogenicity based on known carcinogenicity in laboratory animals.
Acrylamide is a chemical substance formed by a reaction between amino acids and sugars. It usually occurs when foods with high starch content, such as potatoes, root vegetables and bread, are cooked at high temperatures (above 120 ° C) in frying, roasting or baking. Acrylamide is not added to foods intentionally, it occurs as a natural result of the cooking process and can occur in almost any food cooked above a certain temperature.
Log Octanol-Water Partition Coef (SRC):
Log Kow (KOWWIN v1.67 estimate) = -1.81
Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.42):
Boiling Pt (deg C): 276.50 (Adapted Stein & Brown method)
Melting Pt (deg C): 69.46 (Mean or Weighted MP)
VP(mm Hg,25 deg C): 0.000205 (Modified Grain method)
MP (exp database): 74.5 deg C
Subcooled liquid VP: 0.000602 mm Hg (25 deg C, Mod-Grain method)
Water Solubility Estimate from Log Kow (WSKOW v1.41):
Water Solubility at 25 deg C (mg/L): 1e+006
log Kow used: -1.81 (estimated)
no-melting pt equation used
Water Sol Estimate from Fragments:
Wat Sol (v1.01 est) = 1e+006 mg/L
ECOSAR Class Program (ECOSAR v0.99h):
Class(es) found:
Acrylamides
Henrys Law Constant (25 deg C) [HENRYWIN v3.10]:
Bond Method : 9.45E-012 atm-m3/mole
Group Method: Incomplete
Henrys LC [VP/WSol estimate using EPI values]: 2.727E-011 atm-m3/mole
Log Octanol-Air Partition Coefficient (25 deg C) [KOAWIN v1.10]:
Log Kow used: -1.81 (KowWin est)
Log Kaw used: -9.413 (HenryWin est)
Log Koa (KOAWIN v1.10 estimate): 7.603
Log Koa (experimental database): None
Probability of Rapid Biodegradation (BIOWIN v4.10):
Biowin1 (Linear Model) : 1.0683
Biowin2 (Non-Linear Model) : 0.9954
Expert Survey Biodegradation Results:
Biowin3 (Ultimate Survey Model): 3.0815 (weeks )
Biowin4 (Primary Survey Model) : 4.0367 (days )
MITI Biodegradation Probability:
Biowin5 (MITI Linear Model) : 0.7671
Biowin6 (MITI Non-Linear Model): 0.8820
Anaerobic Biodegradation Probability:
Biowin7 (Anaerobic Linear Model): 0.2064
Ready Biodegradability Prediction: YES
Hydrocarbon Biodegradation (BioHCwin v1.01):
Structure incompatible with current estimation method!
Sorption to aerosols (25 Dec C)[AEROWIN v1.00]:
Vapor pressure (liquid/subcooled): 0.0803 Pa (0.000602 mm Hg)
Log Koa (Koawin est ): 7.603
Kp (particle/gas partition coef. (m3/ug)):
Mackay model : 3.74E-005
Octanol/air (Koa) model: 9.84E-006
Fraction sorbed to airborne particulates (phi):
Junge-Pankow model : 0.00135
Mackay model : 0.00298
Octanol/air (Koa) model: 0.000787
Atmospheric Oxidation (25 deg C) [AopWin v1.92]:
Hydroxyl Radicals Reaction:
OVERALL OH Rate Constant = 28.2479 E-12 cm3/molecule-sec
Half-Life = 0.379 Days (12-hr day; 1.5E6 OH/cm3)
Half-Life = 4.544 Hrs
Ozone Reaction:
OVERALL Ozone Rate Constant = 0.175000 E-17 cm3/molecule-sec
Half-Life = 6.549 Days (at 7E11 mol/cm3)
Fraction sorbed to airborne particulates (phi): 0.00216 (Junge,Mackay)
Note: the sorbed fraction may be resistant to atmospheric oxidation
Soil Adsorption Coefficient (PCKOCWIN v1.66):
Koc : 1
Log Koc: 0.000
Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67]:
Rate constants can NOT be estimated for this structure!
Bioaccumulation Estimates from Log Kow (BCFWIN v2.17):
Log BCF from regression-based method = 0.500 (BCF = 3.162)
log Kow used: -1.81 (estimated)
Volatilization from Water:
Henry LC: 9.45E-012 atm-m3/mole (estimated by Bond SAR Method)
Half-Life from Model River: 6.23E+007 hours (2.596E+006 days)
Half-Life from Model Lake : 6.796E+008 hours (2.832E+007 days)
Removal In Wastewater Treatment:
Total removal: 1.85 percent
Total biodegradation: 0.09 percent
Total sludge adsorption: 1.75 percent
Total to Air: 0.00 percent
(using 10000 hr Bio P,A,S)
Level III Fugacity Model:
Mass Amount Half-Life Emissions
(percent) (hr) (kg/hr)
Air 0.000223 8.59 1000
Water 39 360 1000
Soil 60.9 720 1000
Sediment 0.0713 3.24e+003 0
Persistence Time: 579 hr
N-Methylolacrylamide is a bifunctional monomer used in the production of thermoplastic polymers and as a cross-linking agent in adhesives and binders for paper products and textiles. No data were available on occupational exposure to this compound.
N-Methylolacrylamide was tested by oral gavage in one experiment in mice and one experiment in rats. In mice, it increased the incidences of Harderian gland adenomas, hepatocellular adenomas and carcinomas and alveolar-bronchiolar lung adenomas and carcinomas in animals of each sex and the incidence of benign granulosa-cell tumours of the ovary in females. In rats, no increase in tumour incidence was observed.
N-Methylolacrylamide is absorbed by rats and mice after oral administration; no information was available regarding dermal application or inhalation. N-Methylolacrylamide administered to rats intravenously was distributed rapidly in body water; its distribution in tissues and subcellularly is similar to that of acrylamide. N-Methylolacrylamide reacts with glutathione, protein sulfhydryls and haemoglobin at rates similar to those of acrylamide, but it is not known if it is converted to acrylamide or an epoxide. Neurotoxicity developed in rats and mice exposed subchronically to N-methylolacrylamide.
No data were available on the genetic and related effects of N-methylolacrylamide in humans.
N-Methylolacrylamide did not induce micronuclei in mouse bone marrow in vivo but did induce chromosomal aberrations in Chinese hamster ovary cells in vitro and weakly increased the frequency of sister chromatid exchange. It was not mutagenic to Salmonella typhimurium.
There is inadequate evidence in humans for the carcinogenicity of N-methylolacrylamide.
There is limited evidence in experimental animals for the carcinogenicity of N-methylolacrylamide.
Akrilamid (ya da akrilik amid) C3H5NO kimyasal formülüne sahip kimyasal bileik. IUPAC ismi prop-2-enamide’dir. Beyaz bir kokusuz kristal katdr, su, etanol, eter ve kloroform içinde çözünür. Akrilamid asit, baz, oksitleyici ajanlar, demir ve demir tuzlarnn bulunduu ortamda parçalanr. Termal olmayarak bozunmas amonyak ve termal bozunmas karbon monoksit, karbon dioksit ve azot oksitleri üretir.
Akrilamid akrilonitrilin nitril hidrataz tarafndan hidrolizi ile hazrlanabilir. Endüstride akrilamidin çou, suda çözünebilen younlatrc olarak kullanlan poliakrilamid sentezinde kullanlr. Bunlar arasnda atk su artma, jel Elektroforez (SDS-PAGE), kat üretimi, maden ileme, üçüncül ya kurtarma ve ütüsüz kuma üretimi bulunur. Baz akrilamidler boya ve dier monomerlerlerin imalatnda kullanlr.
Akrilamid’in 2002 ylnda baz niastal gdalardaki kefi bu yiyeceklerin kanserojen olup olmad hakknda soru iaretleri yaratt. 2006 yl itibaryla akrilamid tüketiminin insanlarda kanser geliimini tetikleyip tetiklemedii net deildir.
Akrilamid ABD’de, Acil durum Planlamas ve Toplum Bilme-Hakk Hareketi (42 U. S. C. 11002) 302. ksmda çok tehlikeli madde olarak snflandrlmtr ve üreten, depolayan ve önemli miktarda kullanan tesisler kat raporlama gerekliliklerine tabidir.[2]
Poliakrilamid ilk olarak laboratuvar ortamnda 1950’lerin balarnda kullanld. 1959 ylnda, Davis ve Ornstein[3] ile Raymond ve Weintraub[4] gruplar bamsz olarak poliakrilamid jel Elektroforez’in yüklü molekülleri ayrmak amacyla kullanlmasna dair makale yaymlamlardr.[5] Teknik bugün yaygn olarak kabul edilmitir, hala moleküler biyoloji laboratuvarnda yaygn bir protokoldür.
Akrilamid moleküler biyoloji laboratuvarlarnda baka pek çok kullanm alanna da sahiptir; lineer poliakrilamid (LPA), küçük miktardaki DNA’nn çökeltilmesinde tayc olarak kullanlr. Birçok laboratuvar tedarik irketi LPA’y bu kullanm amacyla satar.[6]
Akrilamidin çou çeitli polimerler üretmek için kullanlr.[7][8] 1970’ler ve 1980’lerde, oransal olarak en büyük kullanma sahip polimerler su artma için kullanld.[9] Ek olarak harç, derz, çimento, kanalizasyon/atk su artma, pestisit formülasyonu, kozmetik, eker üretimi, toprak erozyonu önleme, cevher ileme, gda ambalaj, plastik ürünleri ve kât üretiminde balayc, younlatrc ve topaklatrc kullanmlarn içerir.[10] Poliakrilamid baz saks topraklarnda kullanlr. Baka bir kullanm alan da N-metilol akrilamid ve N-butoksiakrilamid üretiminde kimyasal ortam olaraktr.
ABD akrilamid talebi 2007 ylnda 253.000.000 pound (115.000.000 kg) olup 2006 ylndaki 245.000.000 pound (111.000.000 kg) miktarndan artmtr.
Akrilamid ABD devlet kurumlar tarafndan potansiyel mesleki kanserojen olarak kabul edilmi ve Uluslararas Kanserojen Aratrmalar Ajans tarafndan Grup 2A Kanserojen snfna dahil edilmitir. Mesleki Güvenlik ve Salk daresi ve Ulusal Mesleki Güvenlik ve Salk Enstitüsü günlük 8 saatlik mesaide deriden maruz kalma limitini 0.03 mg/m3 olarak belirlemitir.[11] Hayvan modellerinde akrilamide maruz kalndnda böbreküstü bezleri, tiroid, akcier ve testislerde tümöre sebep olmutur. Akrilamid deriden kolaylkla emilir ve organizma boyunca dalr. Akrilamide maruz kalndktan sonra en fazla kan, açkta kalmayan deri, böbrekler, karacier, testis, dalakta rastlanr. Akrilamid, sitokrom P-450 tarafndan metabolik olarak genotoksik metabolitine aktive edilebilir; bunun akrilamidin kanserojenezinde kritik basamak olduu düünülmektedir. Dier taraftan, akrilamid ve glisidamid glutatyon ile birleip akrilamid ve izomerik glisidamid-glutatyon birleiklerini oluturarak detoksifiye edilebilir,[12] daha sonra merkaptürik aside metoblize olup idrarla atlr. Akrilamidin ayrca maruz kalan insanlarda nörotoksik etkileri olduu da bulunmutur. Hayvan çalmalar da nörotoksik etkileri kantlar ayrca spermde mutasyonlar olduunu da gösterir.
2014 (2014) itibaryla beslenmeden alnan akrilamidin insanlarda kanser oluumunu etkileyip etkilemedii bilinmemektedir. Akrilamidle beslemeye dayanan hayvan çalmalar insanlarda geçerli olmayabilir.[13] Gda sanayi içileri ortalamann iki kat akrilamide maruz kaldklarnda daha yüksek kanser oran sergilememilerdir.
Akrilamid ayn zamanda deride tahri edici özellik gösterir ve deride tümör balatc olabilir, deri kanseri riskini artrabilir. Akrilamid maruziyetinde maruz kalan bölgede dermatit ve periferik nöropati semptomlar görülür.
Laboratuvar aratrmalar baz fitokimyasallarn ilaca gelitirilme potansiyeli olduunu ve akrilamidin toksisitesini hafifleteceini göstermitir.
Akrilamid, amino asitler ve ekerler arasndaki bir reaksiyon ile oluan kimyasal bir maddedir. Genellikle patates, kök sebzeler ve ekmek gibi yüksek niasta içeriine sahip yiyecekler, kzartma, kavurma veya piirme ilemlerinde yüksek scaklklarda (120 ° C’nin üstünde) piirildiinde ortaya çkar.
Akrilamid gdalara kastl olarak eklenmez, piirme ileminin doal bir sonucu olarak ortaya çkar ve belli bir snn üzerinde pien hemen hemen her yiyecekte meydana gelebilir.
Akrilamid oluurken, yüksek scaklktaki piirme srasnda Maillard reaksiyonu denilen bir süreç oluur. Doal olarak mevcut su, eker ve amino asitler, bir gda maddesinin karakteristik lezzetini, dokusunu, rengini ve kokusunu yaratmak için birleirler. Bu süreç ayrca akrilamid üretebilir. Hayvanlar üzerinde yaplan laboratuar testleri sonucunda akrilamid maddesinin, kansere neden olduu ortaya çkmtr. akrilamid maddesinin insan beslenmesinde kansere neden olduu henüz kesinlememi olsa da uzmanlar gdalarn içerisinde yer alan akrilamidin, insanlarda da kansere neden olabilecei görüündeler. Akrilamid belli bir sdan sonra meydana geldii için uzmanlar, közlenmi gdalarn, yüksek sda pimi patates kzartmasnn, cipslerin, keklerin, bisküvilerin ve kahvelerin içerisinde akrilamid maddesinin bulunduunu belirtiyorlar. Genel bir kural olarak, patates, kök sebzeler ve ekmek gibi niastal yiyeceklerin kzartlmas, piirilmesi, srasnda çok fazla kavrulmamasna veya yank olmamasna dikkat edin. Paket üzerindeki piirme talimatlarn kontrol edin ve patates kzartmas, gibi paketlenmi gda ürünlerini kzartma veya frnda piirme talimatlarna dikkatlice uyun.
Paket üzerindeki talimatlar, ürünü doru ekilde piirmek için tasarlanmtr. Bu, niastal yiyecekleri çok uzun süre boyunca yüksek scaklklarda piirmenize engel olur. Yüksek scaklklarda piirmek istediiniz patatesleri buzdolabnda saklamayn. Çi patateslerin buzdolabnda saklanmas, patateslerde serbest radikallerin olumasna neden olabilir. Bu nedenlerden dolay papates dolaptayken çkartlp yüksek sda kzartlrsa içerisinde akrilamid maddesi oluacak ve kanserojen hale gelecektir.
Patatesleri serin ve k almayan ortamlarda saklamaya özen gösterebilirsiniz.
Akrilamid, N-metilolakrilamid oluturmak için formaldehit ile kolayca reaksiyona girer (Updegraff ve dierleri, 1978). 1991’de mevcut olan bilgiler, N-metilolakrilamidin Japonya’da iki irket ve Hollanda, Birleik Krallk ve ABD’de birer irket tarafndan üretildiini göstermitir (Chemical Information Services Ltd, 1991). Lapanda 1992 ylnda yaklak 900 ton toz ve 250 ton su solüsyonu olarak üretilmitir (Japonya Petrokimya Endüstrisi Dernei, 1993).
N-Metilolakrilamid, reaktif vinil ve hidroksietil gruplarna sahip iki ilevli bir monomerdir. Termoplastik polimerler, N-metilolakrilamidin emülsiyon, çözelti ve süspansiyon teknikleriyle çeitli vinil monomerlerle kopolimerizasyonu ile oluturulabilir. Asl hidroksietil gruplarna sahip olan ortaya çkan ürünler, orta koullar altnda çapraz balanmaya urayabilir, bu da termoplastik omurga polimerlerinin harici bir çapraz balama maddesinin yokluunda kullanm noktasnda termoset malzemelere dönütürülmesine izin verir. Tersine, hidroksietil grubu selüloz gibi bir substrat ile reaksiyona sokulabilir ve ardndan serbest radikal polimerizasyonu ile çapraz balanabilir (ABD Ulusal Toksikoloji Program, 1989; American Cyanamid Co., 1990a, b). N-metilolakrilamidin kullanmlar, kat yapmnda ve tekstilde yaptrc ve balayclardan, vernikler, filmler ve boyutlandrma maddeleri için çeitli yüzey kaplamalar ve reçinelere kadar uzanr (American Cyanamid Co., 1990a, b; Bucher ve dierleri, 1990). Kat için slak mukavemet ve kuru mukavemet ajanlarnda, krma direnci için tekstil apre ajanlarnda, antistatik ajanlarda, dispersiyon ajanlarnda, çapraz balama ajanlarnda ve emülsiyon polimerlerinde kullanlabilir.
Pamuk, hafif bir asit katalizör yardmyla N-metilol akrilamid uygulanarak akrilamidometile edildi. N-metilol akrilamidin anhidroglikoza molal oran yaklak 0.2’yi atnda, bu reaksiyonun verimi aniden azald ve addon ile younluk deiimi dorusallktan ayrld. Bu ve dier mevcut gerçekler, selülozdaki üç hidroksilden sadece birinin, muhtemelen 6 pozisyonunda olann, akrilamidometil eter oluumunda rol oynadn ve pamuun bu reaktif için yaklak% 20 eriilebilir olduunu gösterdi. Akrilamidometillenmi pamuk, serbest radikal veya alkali katalizörlerle muamele edildiinde, çift balar ksmen doymu hale geldi ve mekanik özellikler muhteem bir ekilde deiti. Özellikle, krklk geri kazanm ile ölçüldüü üzere kuman esneklii iyiletirildi. Kuman çeitli akrilamidometil içerii seviyelerinde çift ba reaksiyonunun analizi, serbest radikal katalizinin asl çift balarn homopolimerizasyonuna neden olduunu, su varlnda alkalin katalizinin, çift balar ve selüloz hidroksilleri arasnda Michael younlamasna neden olduunu gösterdi ve alkalin son ilem kuru halde gerçekletirildiinde bu iki reaksiyon birbiriyle rekabet etti. Bu reaksiyonlar kuma çapraz balad ve çapraz ba içerii, molal metilen ve çift ba içeriklerinin farkndan hesaplanabilir.
Krklk geri kazanm, eriilebilir anhidroglükoz birimlerinin çapraz balara oran 4 ila 5 olduunda kataliz yöntemi için maksimum elde edilebilir deer özelliine ulat. Çapraz balanm kumalar asit içinde hidrolize edildiinde, çapraz balamayla üretilen krklk geri kazanm art, yaklak yarsndan sonra elimine edildi. çapraz balantlar kesildi. Kalan çapraz balar krkln iyilemesine katkda bulunmad. Kuru hal çapraz balama ilemleri, nemin yeniden kazanlmasn azaltt, younluu artrd ve x-n modeli üzerinde hiçbir etkisi olmad. Bunun tersine, slak hal çapraz balanmas nemin geri kazanmn artrd, x-n modelini deitirdi ve belirli koullar altnda younluu azaltt. Bu sonuçlar, slak haldeki çapraz balamann pamuun ekilsiz ksmn arttrdn göstermektedir. Islak hal çapraz balama, kuru krk geri kazanmndan daha yüksek slakla yol açarken, bunun tersi kuru hal çapraz balama için doruydu. Alkali katalizör kuma bozmasa da, alkali katalizli çapraz balama gerilme mukavemetini önemli ölçüde azaltmtr. Çapraz balama maddesi olmadan kuma bozduu gerçeine ramen, serbest radikal katalizi gerilme mukavemeti için daha elveriliydi.
N-metilol akrilamid) tek bana veya kombinasyon halinde kimyasal olarak modifiye edilmi jüt, nem geri kazanm, gerilme özellikleri, kuma sertlii, krklk geri kazanm açs, büzülme parametreleri ve termal davran gibi tekstil ile ilgili önemli özellikleri iyiletirdii veya deitirdii bulunmutur. Bu, çözgü yolu salamlnda azalmaya yol açar. K2S2O8, (NH4) 2S 2O8 veya H2O2’nin balatc olarak kullanlabildii ve asit younlatrma katalizörü olarak NH4CI veya (NH4) 2HPO4’ün kullanld pamuklu kumalarda N-metilolakrilamidin polimerizasyonu ve younlama reaksiyonu. lem görmü kuman krk geri kazanm ve anma direnci (düz), reçine içeriinin daha yüksek deeri ile artmtr; yrtlma mukavemeti. NH4CI gibi asit katalizörlerin eklenmesinin buruma direncinin derecesi üzerindeki etkisi dikkate deerdir, ancak tek bana K2S2O8 gibi nötr katalizörlerde baz belirgin iyilemeler elde edilmitir.