TRIETHYLAMINE (TRETLAMN)
triethylamine ( trietil amin ) (trietilamin)
EC Number:204-469-4
CAS Number:121-44-8
SYNONMYS:
triethylamine; triethylamine acetate; triethylamine dinitrate; triethylamine hydrobromide; triethylamine hydrochloride; triethylamine maleate (1:1); triethylamine phosphate; triethylamine phosphate (1:1); triethylamine phosphonate (1:1); triethylamine sulfate; triethylamine sulfate (2:1); triethylamine sulfite (1:1); triethylamine sulfite (2:1); triethylammonium formate; triethylamine ; 121-44-8; N,N-Diethylethanamine; Ethanamine, N,N-diethyl-; (Diethylamino)ethane; Triaethylamin; Triethylamin; Trietilamina; triethyl amine; N,N,N-triethylamine ; NEt3; Diethylaminoethane; Triaethylamin [German]; Trietilamina [Italian]; triethyl-amine; UNII-VOU728O6AY; (C2H5)3N; CCRIS 4881; HSDB 896; Et3N; N,N-diethyl-ethanamine; EINECS 204-469-4; UN1296; VOU728O6AY; AI3-15425; CHEBI:35026; ZMANZCXQSJIPKH-UHFFFAOYSA-N; triethylamine [UN1296] [Flammable liquid]; triethylamine , >=99.5%; TRIETHYLAMMONIUM ION; TEN [Base]; triehtylamine; triehylamine; trieihylamine; triethlyamine; triethyamine; triethylamme; triethylarnine; trietylamine; Thethylamine; Triethlamine; triethyIamine; Triethylannine; tri-ethylamine; triehyl amine; triethyl amin; triethylam ine; triethylami-ne; triethylamine -; trietyl amine; tri ethyl amine; tri-ethyl amine; triethyl- amine; Green Tea 95%; N, N-diethylethanamine; Green Tea PE 50%; Green Tea PE 90%; N,N,N-triethylamine #; triethylamine , 99.5%; triethylamine , >=99%; ACMC-1BP6L; DSSTox_CID_4366; EC 204-469-4; AC1L1R2D; AC1Q2Z7B; N(Et)3; DSSTox_RID_77381; NCIOpen2_006503; DSSTox_GSID_24366; KSC176A2H; BIDD:ER0331; triethylamine (Reagent Grade); triethylamine , 99% 250g; triethylamine , LR, >=99%; 636-70-4 (hydrobromide); (CH3CH2)3N; 554-68-7 (hydrochloride); CHEMBL284057; N(CH2CH3)3; Green Tea Extract (50/30); Green Tea Extract (90/40); 5204-74-0 (acetate); DTXSID3024366; triethylamine HPLC, 99.6%; CTK0H6023; KS-00000VNL; triethylamine , p.a., 99.0%; Green Tea Extract 50% Material; MolPort-000-872-061; triethylamine , analytical standard; BCP07310; N(C2H5)3; triethylamine , for synthesis, 99%; ZINC1242720; Tox21_200873; ANW-17634; GREEN TEA Powder & Powder Extract; LS-647; MFCD00009051; SBB040898; STL282722; 54272-29-6 (unspecified sulfate); AKOS000119998; triethylamine , purum, >=99% (GC); triethylamine , ZerO2(TM), >=99%; ZINC112977393; MCULE-6692975244; RP18755; RTR-003502; UN 1296; 10138-93-9 (unspecified phosphate); 1069-58-5 (maleate[1:1]); 2399-73-7 (sulfate[2:1]); NCGC00248857-01; NCGC00258427-01; 35365-94-7 (phosphate[1:1]); AJ-25198; AN-22845; BC219599; CAS-121-44-8; KB-62018; SC-16141; TR-003502; triethylamine , BioUltra, >=99.5% (GC); triethylamine , SAJ firstgrade, >=98.0%; FT-0688146; ST50214499; triethylamine [UN1296] [Flammable liquid]; triethylamine , SAJ special grade, >=98.0%;triethylamine , puriss. p.a., >=99.5% (GC); J-525077; F0001-0344; I14-101545; triethylamine , for amino acid analysis, >=99.5% (GC); Z137796018; InChI=1/C6H15N/c1-4-7(5-2)6-3/h4-6H2,1-3triethylamine , for protein sequence analysis, ampule, >=99.5% (GC); triethylamine, United States Pharmacopeia (USP) Reference Standard; 1200828-44-9; 144514-14-7; 168277-99-4; 172227-74-6; 449752-61-8; 750564-56-8;triethylamine ;triethylamine acetate;triethylamine dinitrate;triethylamine hydrobromide;triethylamine hydrochloride;triethylamine maleate (1:1);triethylamine phosphate;triethylamine phosphate (1:1);triethylamine phosphonate (1:1);triethylamine sulfate;triethylamine sulfate (2:1);triethylamine sulfite (1:1);triethylamine sulfite (2:1);triethylammonium formate;N, N-diethylethanamine; Green Tea PE 50%; Green Tea PE 90%; N,N,N-triethylamine #; triethylamine , 99.5%; triethylamine , >=99%; ACMC-1BP6L; DSSTox_CID_4366; AC1L1R2D; AC1Q2Z7B; N(Et)3; DSSTox_RID_77381; NCIOpen2_006503; VOU728O6AY; DSSTox_GSID_24366; KSC176A2H; BIDD:ER0331; triethylamine (Reagent Grade); triethylamine , 99% 250g; triethylamine , LR, >=99%; 636-70-4 (hydrobromide); (CH3CH2)3N; 554-68-7 (hydrochloride); CHEMBL284057; N(CH2CH3)3; Green Tea Extract (50/30); Green Tea Extract (90/40); 5204-74-0 (acetate); DTXSID3024366, triethylamine , HPLC, 99.6%; CTK0H6023; KS-00000VNL triethylamine , p.a., 99.0%; Green Tea Extract 50% Material; MolPort-000-872-061; triethylamine , analytical standard; N(C2H5)3; triethylamine , for synthesis, 99%; ZINC1242720; Tox21_200873; -17634; GREEN TEA Powder & Powder Extract; LS-647, STL282722; 54272-29-6 (unspecified sulfate); AKOS000119998; triethylamine , purum, >=99% (GC); triethylamine , ZerO2(TM), >=99%; ZINC112977393; MCULE-6692975244; RP18755; RTR-003502; UN 1296; 10138-93-9 (unspecified phosphate); 1069-58-5 (maleate[1:1]); 2399-73-7 (sulfate[2:1]); NCGC00248857-01; NCGC00258427-01; 35365-94-7 (phosphate[1:1]); AJ-25198; AN-22845; BC219599; CAS-121-44-8; KB-62018; SC-16141; TR-003502; triethylamine , BioUltra, >=99.5% (GC); triethylamine , SAJ first grade, >=98.0%; FT-0688146; ST50214499; triethylamine ; TRETHYLAMNE; TRETHYLENEAMNE; TRETHYLAMNE; tea; tea; TEA; TR ETL AMN ; TRI ETIL AMIN; TRI ETIL AMINE; TR ETYHL AMNE; TRI ETHYL AMINE; TRETHIL AMINE; TRIETHYL AMINE; TRI ETHYL AMINE; tri etil amine; tri ethyl amine ; tr ethyl amne; tr ethyl amne; tr ethyl amin; tr etl amn; tri etil amin; tri etil amine; tri wthyl amine; tri ethyl amine; tri etil amin; t etl amne; tr etl amne; di etil etamin ; di ethil etamn; n n di ethyl etamin; N-N D ETL ETAMN; N N DI ETHYL ETAMIN; NN DETLETAMN; DIETHYLETAMIN; NN DIETHYLETAMIN; diethiletamin; nn diethiletamin; n-n di ethil etamin; n-n d etl etamn; nn diethyletamine; n-n, di ethil etamine; trietiletamin; tretletamn; trethylamne; triethylamine ; triethylamine ; TRETHYLAMNE; triethylamine ; TRETLETAMNE; TRIETHYLETAMINE; TRETLETAMNE; TRIETHYLETAMINE; TRI ETHYL ETAMINE; TR ETL ETAMN; TR ETL ETAMN; TR ETLETAMNE; TRETLAMN; tiritetilamin; trethylamne; triethylamine ; tri etilamine; trietilamin; tri etilamin; tiri etilamin; tr etilamin ; tr ethylamne; tirietilamin; tirietilamine ; thrietilamin; tr etlamne
triethylamine
Properties of triethylamine
Molecular Formula:C6H15N; (C2H5)3N
Molecular Weight:101.193 g/mol
Boiling point: 90 °C (1013 hPa)
Density:0.73 g/cm3 (20 °C)
Explosion limit:1.2 – 9.3 %(V)
Flash point: -11 °C
Ignition temperature: 215 °C
Melting Point: -115 °C
pH value: 12.7 (100 g/l, H₂O, 15 °C) (IUCLID)
Vapor pressure: 72 hPa (20 °C)
Solubility: 133 g/l
Formula: C6H15N / (C2H5)3N
Molecular mass: 101.2
Boiling point: 89°C
Melting point: -115°C
Relative density (water = 1): 0.7
Solubility in water, g/100ml at 20°C: 17 (good)
Vapour pressure, kPa at 20°C: 7.2
Relative vapour density (air = 1): 3.5
Relative density of the vapour/air-mixture at 20°C (air = 1): 1.2
Flash point: -17°C c.c.
Auto-ignition temperature: 230°C
Explosive limits, vol% in air: 1.2-8
Octanol/water partition coefficient as log Pow: 1.45
Application
triethylamine has been used during the synthesis of:
• 5′-dimethoxytrityl-5-(fur-2-yl)-2′-deoxyuridine
• 3′-(2-cyanoethyl)diisopropylphosphoramidite-5′-dimethoxytrityl-5-(fur-2-yl)-2′-deoxyuridine
• polyethylenimine600-β-cyclodextrin (PEI600-β-CyD)
It may be used as a homogeneous catalyst for the preparation of glycerol dicarbonate, via transesterification reaction between glycerol and dimethyl carbonate (DMC).
General description
triethylamine is an aliphatic amine. Its addition to matrix-assisted laser desorption/ionization (MALDI) matrices affords transparent liquid matrices with enhanced ability for spatial resolution during MALDI mass spectrometric (MS) imaging.A head-space gas chromatography (GC) procedure for the determination of triethylamine in active pharmaceutical ingredients has been reported. The viscosity coefficient of triethylamine vapor over a range of density and temperature has been measured.
triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is also abbreviated TEA, yet this abbreviation must be used carefully to avoid confusion with triethanolamine or tetraethylammonium, for which TEA is also a common abbreviation. It is a colourless volatile liquid with a strong fishy odor reminiscent of ammonia and is also the smell of the hawthorn plant. Like diisopropylethylamine (Hünig’s base), triethylamine is commonly employed in organic synthesis.
Synthesis and properties
triethylamine is prepared by the alkylation of ammonia with ethanol:
Niche uses
triethylamine is used to give salts of various carboxylic acid-containing pesticides, e.g. Triclopyr and 2,4-dichlorophenoxyacetic acid[citation needed]triethylamine is the active ingredient in FlyNap, a product for anesthetizing Drosophila melanogaster.[citation needed] triethylamine is used in mosquito and vector control labs to anesthetize mosquitoes. This is done to preserve any viral material that might be present during species identification.
Product Description
triethylamine (TEA) is a colorless liquid with an ammonia-like odor.
Applications/Uses
Ag chem solvents
Agriculture intermediates
Aluminum production
Chemicals & petrochemicals
Electronic chemicals
Insecticides int
Intermediates
Mining
Pharmaceutical chemicals
Resins
Outline
triethylamine (formula: C6H15N), also known as N, N-diethylethanamine, is the most simple tri-substituted uniformly tertiary amine, having typical properties of tertiary amines, including salifying, oxidation, Hing Myers test (Hisberg reaction) for triethylamine does not respond. It is colorless to pale yellow transparent liquid, with a strong smell of ammonia, slightly fuming in the air. Boiling point: 89.5 ℃, relative density (water = 1): 0.70, the relative density (Air = 1): 3.48, slightly soluble in water, soluble in alcohol, ether. Aqueous solution is alkaline, flammable. Vapor and air can form explosive mixtures, the explosion limit is 1.2% to 8.0%. It is toxic, with a strong irritant.
Uses
triethylamine is a clear, colorless liquid with an Ammonia or fish-like odor. It is used in making waterproofing agents, and as a catalyst, corrosion inhibitor and propellant.
It is mainly used as base, catalyst, solvent and raw material in organic synthesis and is generally abbreviated as Et3N, NEt3 or TEA. It can be used to prepare phosgene polycarbonate catalyst, polymerization inhibitor of tetrafluoroethylene, rubber vulcanization accelerator, special solvent in paint remover, enamel anti-hardener, surfactant, antiseptic, wetting agent, bactericides, ion exchange resins, dyes, fragrances, pharmaceuticals, high-energy fuels, and liquid rocket propellants, as a curing and hardening agent for polymers and for the desalination of seawater.
Outline
triethylamine (formula: C6H15N), also known as N, N-diethylethanamine, is the most simple tri-substituted uniformly tertiary amine, having typical properties of tertiary amines, including salifying, oxidation, Hing Myers test (Hisberg reaction) for triethylamine does not respond. It is colorless to pale yellow transparent liquid, with a strong smell of ammonia, slightly fuming in the air. Boiling point: 89.5 ℃, relative density (water = 1): 0.70, the relative density (Air = 1): 3.48, slightly soluble in water, soluble in alcohol, ether. Aqueous solution is alkaline, flammable. Vapor and air can form explosive mixtures, the explosion limit is 1.2% to 8.0%. It is toxic, with a strong irritant.
Uses
triethylamine is a clear, colorless liquid with an Ammonia or fish-like odor. It is used in making waterproofing agents, and as a catalyst, corrosion inhibitor and propellant.
It is mainly used as base, catalyst, solvent and raw material in organic synthesis and is generally abbreviated as Et3N, NEt3 or TEA. It can be used to prepare phosgene polycarbonate catalyst, polymerization inhibitor of tetrafluoroethylene, rubber vulcanization accelerator, special solvent in paint remover, enamel anti-hardener, surfactant, antiseptic, wetting agent, bactericides, ion exchange resins, dyes, fragrances, pharmaceuticals, high-energy fuels, and liquid rocket propellants, as a curing and hardening agent for polymers and for the desalination of seawater.
Health Effects
triethylamine can affect you when inhaled and by passing through the skin.
Contact can severely irritate and bum the skin and eyes with possible eye damage.
Exposure can irritate the eyes, nose and throat.
Inhaling triethylamine can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical mergency.
triethylamine may cause a skin allergy.
triethylamine may affect the liver and kidneys.
triethylamine is a flammable liquid and a dangerous fire hazard.
Category
Flammable liquids
Toxicity grading
Toxic
Acute toxicity
Oral-rat LD50: 460 mg/kg; Oral-Mouse LD50: 546 mg/kg
Stimulus data
Eyes-rabbit 250 mg severe
Explosive hazardous characteristics
Mixed with air can be explosive
Flammability hazard characteristics
In case of fire, high temperature, oxidant, it is flammable, combustion produces toxic fumes of nitrogen oxides
General Description
A clear colorless liquid with a strong ammonia to fish-like odor. Flash point 20°F. Vapors irritate the eyes and mucous membranes. Less dense (6.1 lb / gal) than water. Vapors heavier than air. Produces toxic oxides of nitrogen when burned.
Air & Water Reactions
Highly flammable. Soluble in water.
Reactivity Profile
triethylamine reacts violently with oxidizing agents. Reacts with Al and Zn. Neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides.
Health Hazard
Vapors irritate nose, throat, and lungs, causing coughing, choking, and difficult breathing. Contact with eyes causes severe burns. Clothing wet with chemical causes skin burns.
Fire Hazard
Flammable/combustible material. May be ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks).
Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.
Purification Methods
Dry triethylamine with CaSO4, LiAlH4, Linde type 4A molecular sieves, CaH2, KOH, or K2CO3, then distil it, either alone or from BaO, sodium, P2O5 or CaH2. It has also been distilled from zinc dust, under nitrogen. To remove traces of primary and secondary amines, triethylamine has been refluxed with acetic anhydride, benzoic anhydride, phthalic anhydride, then distilled, refluxed with CaH2 (ammonia-free) or KOH (or dried with activated alumina), and again distilled. Another purification method involved refluxing for 2hours with p-toluenesulfonyl chloride, then distilling. Grovenstein and Williams [J Am Chem Soc 83 412 1961] treated triethylamine (500mL) with benzoyl chloride (30mL), filtered off the precipitate, and refluxed the liquid for 1hour with a further 30mL of benzoyl chloride. After cooling, the liquid was filtered, distilled, and allowed to stand for several hours with KOH pellets. It was then refluxed with, and distilled from, stirred molten potassium. triethylamine has been converted to its hydrochloride (see brlow), crystallised from EtOH (to m 254o), then liberated with aqueous NaOH, dried with solid KOH and distilled from sodium under N2.
Uses
triethylamine is used as a catalytic solvent in chemical syntheses; as an accelerator activator for rubber; as a corrosion inhibitor; as a curing and hardening agent for polymers; as a propellant; in the manufacture of wetting, penetrating, and waterproofing agents of quaternary ammonium compounds; and for the desalination of seawater.
Sources and Potential Exposure
Occupational exposure may occur primarily via inhalation and dermal contact during its manufacture and use. The general population may be exposed to triethylamine from ingesting contaminated food; triethylamine has been identified in broiled beef.
Assessing Personal Exposure
No information was located regarding the measurement of personal exposure to triethylamine
Health Hazard Information
Acute Effects:
Acute exposure of humans to triethylamine vapor causes eye irritation, corneal swelling, and halo vision.
People have complained of seeing “blue haze” or having “smoky vision.” These effects have been reversible upon cessation of exposure. Acute exposure can irritate the skin and mucous membranes in humans.
Acute animal tests in rats, mice, and rabbits, have demonstrated triethylamine to have moderate acute toxicity from inhalation, moderate to high acute toxicity from oral exposure, and high acute toxicity from dermal exposure.
Chronic exposure of workers to triethylamine vapor has been observed to cause reversible corneal edema.Chronic inhalation exposure has resulted in inflammation of the nasal passage in rats. Thickening of the interalveolar walls of the lungs, mucous accumulation in the alveolar spaces of the lungs, and hematological effects have also been reported in rats chronically exposed by inhalation.
Chronic inhalation exposure of rabbits has been reported to cause irritation of the lungs, edema, moderate peribronchitis, vascular thickening, eye lesions, and, at higher levels, liver, kidney, and heart eff
The Reference Concentration (RfC) for triethylamine is 0.007 milligrams per cubic meter (mg/m ) based on inflammation of the nasal passages in rats. The RfC is an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious noncancer effects during a lifetime. It is not a direct estimator of risk but rather a reference point to gauge the potential effects. At exposure increasingly greater than the RfC, the potential for adverse health effects increases. Lifetime exposure above the RfC does not imply that an adverse health effect would necessarily occur.
Reproductive/Developmental Effects:
No information is available on the reproductive or developmental effects of triethylamine in humans. No reproductive or developmental effects were reported in a 3-generation study in rats exposed to triethylamine in drinking water; however, this study had limitations.
Cancer Risk:
No information is available on the carcinogenic effects of triethylamine in humans or animals. EPA has not classified triethylamine with respect to potential carcinogenicity.
Physical Properties
The chemical formula for triethylamine is C6 H1 N5, and its molecular weight is 101.19 g/mol. triethylamine occurs as a colorless flammable liquid that is slightly soluble in water. triethylamine has a strong fishy ammonia-like odor, with an odor threshold of 0.48 parts per million (ppm). The vapor pressure for triethylamine is 400 mm Hg at 31.5 °C, and its log octanol/water partition coefficient (log K ow ) is 1.45.
triethylamine Formula
triethylamine (also know as TEA) is an organic base used in organic synthesis. It is largely used in esters and amides synthesis from acyl chlorides.
Formula and structure: The chemical and molecular formula of triethylamine are N(CH2CH3)3 and C6H15N, respectively. It is also represented as Et3N and its molecular mass is 101.19 g mol-1. triethylamine is a tertiary amine consisting in three ethyl groups (-CH2CH3) linked to a nitrogen atom (N). Its chemical structure can be written as below, in the common representations used for organic molecules.
Occurrence: triethylamine is not easily found in nature. However, it is present in some living organism as xenobiotic compounds. These organisms catalyze the excretion trough monoamine oxidase enzymes, through deamination processes.
Preparation: triethylamine can be prepared by various methods. However, the most extended method is the alkylation of ammonia with ethanol, in the presence of hydrogen and Cu-Ni catalyst:
NH3 + 3 C2H5OH → N(C2H5)3 + 3 H2O
Ethylamine and diethylamine are secondary products of this reaction. triethylamine can also be synthesized from acetaldehyde, ammonia and hydrogen, through hydrogenation catalyst.
Physical properties: It is a colorless volatile liquid with a fishy and ammoniacal odor. Its density is 0.726 g mL-1 and its boiling point is 88.8 ºC. It is slightly soluble in water at 20 ºC. It is soluble in ethanol, carbon tetrachloride and ethyl ether and very soluble in acetone, benzene and chloroform.
Chemical properties: triethylamine is an aliphatic amine considered a weak base (pKah is 10.75). triethylamine is widely used in organic syntheses due its the most simple tri-substituted uniformly amines liquid (trimethylamine is a colorless gas at room temperature). triethylamine emits toxic vapors of nitrogen oxides when heated.
Uses: triethylamine is used as organic base, removing the hydrogen from the secondary amine, in the synthesis of esters and amides from acyl chlorides. The reaction products include a quaternary ammonium salt:
R2NH + R’C(O)Cl + Et3N → R’C(O)NR2 + Et3NH+Cl-
triethylamine is use to manufacture a great variety of chemical compounds like fuels, aditives, intermediats, preservatives, surfactants and fungicides.
Health effects/safety hazards: triethylamine is extremely flammable and corrosive. Moreover, it forms explosive mixtures with air. triethylamine can burn skin, eyes and respiratory system. It is incompatible with strong oxidizers, strong acids and halogenated compounds.
Applications: triethylamine is used as a competing base for the separation of acidic basic and neutral drugs by reverse-phased high-performance liquid chromatography (HPLC). triethylamine induces visual disturbances (such as foggy vision) in humans (1), and is also used in industry as a quenching agent in the ozonolysis of alkenes (e.g. (E)-2-Pentene [P227315]). triethylamine is used in the purification of drugs which are pharmacologically or chemically similar through separation in reverse-phase HPLC (2).Drinking water contaminant candidate list 3 (CCL 3) compound as per United States Environmental
Protection Agency (EPA). Environmental contaminants; Food contaminants.
triethylamine is a mobile-phase modifier in RP-HPLC separation of acidic, basic, and neutral drugs. Improves resolution of amino acids and amino acid amides by HPLC by suppressing tailing. triethylamine is commonly employed in organic synthesis in the preparation of esters and amides from acyl chlorides. It is also useful in dehydrohalogenation reactions and Swern oxidations.
triethylamine (TEA) is a very commonly used organic base. Diisopropylethylamine (DIEA) is a closely related organic base. DIEA is more sterically hindered than TEA therefore is less prone to quaternization when used with highly reactive alkylation agents. TEA has a boiling point of 89 C, making it easier to remove via rotovap distillation. DIEA has a boiling point of 127 C, making it more useful for reactions that are over 90 C. In most situations TEA and DIEA can be used interchangably. However, for certain situations one is a better choice than the other.
Common Uses:
– Base in Swern oxidations
– Base in Parikh-Doering oxidations
– Base in Corey-Kim oxidations
– Base in Pd catalyzed reactions (Sonogashira or Heck)
– Base in substitution reactions
– Base in SNAr reactions
triethylamine , also known as (C2H5)3N or NET3, belongs to the class of organic compounds known as trialkylamines. These are organic compounds containing a trialkylamine group, characterized by exactly three alkyl groups bonded to the amino nitrogen. triethylamine exists as a solid, soluble (in water), and a very strong basic compound (based on its pKa). Within the cell, triethylamine is primarily located in the cytoplasm. triethylamine is also a parent compound for other transformation products, including but not limited to, 2-diethylaminoethanol, NTA, and triethanolamine. triethylamine has an ammoniacal and fishy taste.
Air & Water Reactions
Highly flammable. Soluble in water.
Fire Hazard
Flammable/combustible material. May be ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks).
Vapor explosion hazard indoors, outdoors or in sewers. Those substances designated with a (P) may polymerize explosively when heated or involved in a fire. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.
Health Hazard
Vapors irritate nose, throat, and lungs, causing coughing, choking, and difficult breathing. Contact with eyes causes severe burns. Clothing wet with chemical causes skin burns.
Reactivity Profile
triethylamine reacts violently with oxidizing agents. Reacts with Al and Zn. Neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides
Protective Clothing
Skin: Wear appropriate personal protective clothing to prevent skin contact.
Eyes: Wear appropriate eye protection to prevent eye contact.
Wash skin: The worker should immediately wash the skin when it becomes contaminated.
Remove: Work clothing that becomes wet should be immediately removed due to its flammability hazard(i.e. for liquids with flash point < 100°F)
Change: No recommendation is made specifying the need for the worker to change clothing after the work shift.
Provide: Eyewash fountains should be provided (when concentration is >1%) in areas where there is any possibility that workers could be exposed to the substance; this is irrespective of the recommendation involving the wearing of eye protection. Facilities for quickly drenching the body should be provided (when concentration is >1%) within the immediate work area for emergency use where there is a possibility of exposure. [Note: It is intended that these facilities provide a sufficient quantity or flow of water to quickly remove the substance from any body areas likely to be exposed. The actual determination of what constitutes an adequate quick drench facility depends on the specific circumstances. In certain instances, a deluge shower should be readily available, whereas in others, the availability of water from a sink or hose could be considered adequate.
triethylamine is an ion-pairing reagent that alters selectivity in reverse-phase HPLC separations. By pairing with peptides, it effectively sharpens peaks, resulting in improved peak resolution.
Highlights:
>99.5% triethylamine purity, allowing sensitive peptide detection at low UV wavelengths in reverse-phase HPLC peptide separation systems Packaged in amber glass bottles with protective PTFE-lined fluorocarbon caps for reagent integrityHas a low UV absorbance to provide the most sensitive detection across all wavelengths
SPILLAGE DISPOSAL
Evacuate danger area! Consult an expert! Personal protection: complete protective clothing including self-contained breathing apparatus. Ventilation. Remove all ignition sources. Do NOT let this chemical enter the environment. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent. Then store and dispose of according to local regulations.
Physical State; Appearance
COLOURLESS LIQUID WITH CHARACTERISTIC ODOUR.
Physical dangers
The vapour is heavier than air and may travel along the ground; distant ignition possible.
Chemical dangers
Decomposes on burning. This produces irritating and toxic gases including nitrogen oxides. The substance is a strong base. It reacts violently with acid and is corrosive to aluminium, zinc, copper and their alloys in the presence of moisture. Reacts violently with strong oxidants. This generates fire and explosion hazard. Attacks some forms of plastic, rubber and coatings.
Routes of exposure
The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
Effects of short-term exposure
The substance is corrosive to the eyes, skin and respiratory tract. Corrosive on ingestion. Inhalation may cause lung oedema. See Notes. The effects may be delayed. Medical observation is indicated. The substance may cause effects on the central nervous system.
Description
triethylamine is an ion-pairing reagent that alters selectivity in reverse-phase HPLC separations. By pairing with peptides, it effectively sharpens peaks, resulting in improved peak resolution.
Highlights:
>99.5% triethylamine purity, allowing sensitive peptide detection at low UV wavelengths in reverse-phase HPLC peptide separation systems Packaged in amber glass bottles with protective PTFE-lined fluorocarbon caps for reagent integrit Has a low UV absorbance to provide the most sensitive detection across all wavelengths
Properties of triethylamine
Alternate names TEA, Diethylethanamine Molecular formula C6H15N Molecular weight 101.19 Density 0.726g/mL
triethylamine
triethylamine is a synthetic chemical compound with the formula: N(CH2CH3)3. This formula is commonly abbreviated as Et3N or TEA. The “TEA” abbreviation must be carefully used in order to prevent confusion with triethanolamine or tetraethyl ammonium, however. As a hydrochloride salt, it is a colorless, volatile liquid substance with a strong “fishy” odor.
TEA is created by alkalizing ethanol with ammonia. As a hydrochloride salt, triethylamine is an odorless, colorless powder that attracts and holds water molecules very easily. In this form, TEA decomposes at an ambient temperature of 261 degrees Celsius.
TEA is a commonly used base in the organic synthesis of other chemical compounds. This is especially true of amides from acyl chlorides and esters. In the industrial arena, TEA is primarily used to produce quatemary ammoniums (“QAs”) for textiles and the QA salt derivative of various fabric dyes.
Because it also functions as an acid neutralizer and chemical catalyst, it is often used in an intermediate capacity for pesticide and medication manufacturing.
triethylamine is a colorless volatile liquid with a strong odor reminiscent of ammonia and is also the smell of the hawthorn plant. It is commonly employed in organic synthesis as a base, most often in the preparation of esters and amides from acyl chlorides
triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is a commonly encountered in organic synthesis probably because it is the simplest symmetrically trisubstituted amine, i.e. a tertiary amine, that is liquid at room temperature. It possesses a strong fishy odor reminiscent of ammonia. Diisopropylethylamine (Hünig’s base, CAS # 7087-68-5) is a widely used relative of triethylamine . triethylamine is also the smell of the hawthorn plant, and semen, among others
triethylamine is commonly employed in organic synthesis as a base, most often in the preparation of esters and amides from acyl chlorides. Such reactions lead to the production of hydrogen chloride which combines with triethylamine to form the salt triethylamine hydrochloride, commonly called triethylammonium chloride. This reaction removes the hydrogen chloride from the reaction mixture, which is required for these reactions to proceed to completion (R, R’ = alkyl, aryl):
R2NH + R’C(O)Cl + Et3N → R’C(O)NR2 + Et3NH+Cl-
Like other tertiary amines, it catalyzes the formation of urethane foams and epoxy resins. It is also useful in dehydrohalogenation reactions and Swern oxidations.triethylamine is readily alkylated to give the corresponding quaternary ammonium salt:
RI + Et3N → Et3NR+I-triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is a commonly encountered in organic synthesis probably because it is the simplest symmetrically trisubstituted amine, i.e. a tertiary amine, that is liquid at room temperature. It possesses a strong fishy odor reminiscent of ammonia. Diisopropylethylamine (Hünig’s base, CAS # 7087-68-5) is a widely used relative of triethylamine . triethylamine is also the smell of the hawthorn plant, and semen, among others
triethylamine is commonly employed in organic synthesis as a base, most often in the preparation of esters and amides from acyl chlorides. Such reactions lead to the production of hydrogen chloride which combines with triethylamine to form the salt triethylamine hydrochloride, commonly called triethylammonium chloride. This reaction removes the hydrogen chloride from the reaction mixture, which is required for these reactions to proceed to completion (R, R’ = alkyl, aryl):
R2NH + R’C(O)Cl + Et3N → R’C(O)NR2 + Et3NH+Cl-
Like other tertiary amines, it catalyzes the formation of urethane foams and epoxy resins. It is also useful in dehydrohalogenation reactions and Swern oxidations.
triethylamine is readily alkylated to give the corresponding quaternary ammonium salt:
RI + Et3N → Et3NR+I-
PHARMACOLOGY AND BIOCHEMISTRY
Absorption, Distribution and Excretion
METABOLISM
There have been few studies on the metabolism of industrially important aliphatic amines such as triethylamine . It is generally assumed that amines not normally present in the body are metabolized by monoamine oxidase and diamine oxidase (histaminase). Monoamine oxidase catalyzes the deamination of primary, secondary, and tertiary amines. … Ultimately ammonia is formed and will be converted to urea. The hydrogen peroxide formed is acted upon by catalase and the aldehyde formed is thought to be converted to the corresponding carboxylic acid by the action of aldehyde oxidase.
Five healthy volunteers were exposed by inhalation to triethylamine (TEA; four or eight hours at about 10, 20, 35, and 50 mg/cu m), a compound widely used as a curing agent in polyurethane systems. Analysis of plasma and urine showed that an average of 24% of the TEA was biotransformed into triethylamine -N-oxide (TEAO) but with a wide interindividual variation (15-36%). The TEA and TEAO were quantitatively eliminated in the urine. The plasma and urinary concentrations of TEA and TEAO decreased rapidly after the end of exposure (average half time of TEA was 3.2 hr).In 20 workers studied before, during, and after exposure to triethylamine (TEA) in a polyurethane-foam producing plant the amount of TEA and its metabolite triethylamine -N-oxide (TEAO) excreted in urine corresponded to an average of 80% of the inhaled amount. An average of 27% was TEAO, but with a pronounced interindividual variation. Older subjects excreted more than younger ones; less than 0.3% was excreted as diethylamine.
Hazards Summary
Acute (short-term) exposure of humans to triethylamine vapor causes eye irritation, corneal swelling, and halo vision. People have complained of seeing “blue haze” or having “smoky vision.” These effects have been reversible upon cessation of exposure. Acute exposure can irritate the skin and mucous membranes in humans. Chronic (long-term) exposure of workers to triethylamine vapor has been observed to cause reversible corneal edema. Chronic inhalation exposure has resulted in respiratory and hematological effects and eye lesions in rats and rabbits. No information is available on the reproductive, developmental, or carcinogenic effects of triethylamine in humans. EPA has not classified triethylamine with respect to potential carcinogenicity.
Fire Potential
A very dangerous fire hazard when exposed to heat, flame, or oxidizers.
Contact with strong oxidizers may cause fires
Skin, Eye, and Respiratory Irritations
Irritating to skin, eyes, and respiratory system.
/triethylamine / is strongly alkaline, and when drop is applied to rabbit’s eye, causes severe injury, graded 9 on scale of 1 to 10 after 24 hr /most severe injuries have been rated 10/. Tests of aqueaous solution on rabbit eyes at pH 10 and pH 11 indicate injuriousness /of triethylamine / is related principally to degree of alkalinity.
A 70% solution applied on the skin of guinea pigs caused prompt skin burns leading to necrosis; when held in contact with guinea pig skin for 2 hr, there was severe skin irritation with extensive necrosis and deep scarring.
Flammability
Lower flammable limit: 1.2% by volume; upper flammable limit: 8.0% by volume
Class IB Flammable Liquid: Fl.P. below 73°F and BP at or above 100°F.
Critical Temperature
Critical temperature: 535.6 K; Critical pressure: 3.1 MPa
Critical Pressure
Critical temperature: 535.6 K; Critical pressure: 3.1 MPa
NFPA Hazard Classification
Health: 3. 3= Materials that, on short exposure, could cause serious temporary or residual injury, including those requiring protection from all bodily contact. Fire fighters may enter the area only if they are protected from all contact with the material. Full protective clothing, including self-contained breathing apparatus, coat, pants, gloves, boots and bands around legs, arms, and waist, should be provided. No skin surface should be exposed.
Flammability: 3. 3= This degree includes Class IB and IC flammable liquids and materials that can be easily ignited under almost all normal temperature conditions. Water may be ineffective in controlling or extinguishing fires in such materials.
Instability: 0. 0= This degree includes materials that are normally stable, even under fire exposure conditions, and that do not react with water. Normal fire fighting procedures may be used.
Physical Dangers
The vapour is heavier than air and may travel along the ground; distant ignition possible.
Chemical Dangers
200 ppm
Decomposes on burning. This produces irritating and toxic gases including nitrogen oxides. The substance is a strong base. It reacts violently with acid and is corrosive to aluminium, zinc, copper and their alloys in the presence of moisture. Reacts violently with strong oxidants. This generates fire and explosion hazard. Attacks some forms of plastic, rubber and coatings.
OSHA Standards
Permissible Exposure Limit: Table Z-1 8-hr Time Weighted Avg: 25 ppm (100 mg/cu m).
Vacated 1989 OSHA PEL TWA 10 ppm (40 mg/cu m); STEL 15 ppm (60 mg/cu m) is still enforced in some states.
NIOSH Recommendations
NIOSH questioned whether the PEL proposed by OSHA for triethylamine was adequate to protect workers from recognized health hazards: TWA 10 ppm; STEL 15 ppm.
First Aid Measures
First Aid
EYES: First check the victim for contact lenses and remove if present. Flush victim’s eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim’s eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop. SKIN:
IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water. IMMEDIATELY call a hospital or poison control center even if no symptoms (such as redness or irritation) develop. IMMEDIATELY transport the victim to a hospital for treatment after washing the affected areas. INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing. INGESTION: DO
NOT INDUCE VOMITING. Corrosive chemicals will destroy the membranes of the mouth, throat, and esophagus and, in addition, have a high risk of being aspirated into the victim’s lungs during vomiting which increases the medical problems. If the victim is conscious and not convulsing, give 1 or 2 glasses of water to dilute the chemical and IMMEDIATELY call a hospital or poison control center. IMMEDIATELY transport the victim to a hospital. If the victim is convulsing or unconscious, do not give anything by mouth, ensure that the victim’s airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. Transport the victim IMMEDIATELY to a hospital.
Eye:Irrigate immediately
Skin:Soap wash immediately
Breathing:Respiratory support
Swallow:Medical attention immediately
Inhalation First Aid
Fresh air, rest. Half-upright position. Artificial respiration may be needed. Refer for medical attention.
Skin First Aid
Remove contaminated clothes. Rinse skin with plenty of water or shower. Refer for medical attention .
Eye First Aid
First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention.
Ingestion First Aid
Rinse mouth. Do NOT induce vomiting. Give one or two glasses of water to drink. Refer for medical attention .
Fire Fighting Measures
Suitable extinguishing media: Use water spray, alcohol-resistant foam, dry chemical, or carbon dioxide.
Advice for firefighters: Wear self-contained breathing apparatus for firefighting if necessary.
Use water spray to keep fire-exposed containers cool. Use water spray, dry chemical, “alcohol resistant” foam, or carbon dioxide.
If material on fire or involved in fire: Do not extinguish fire unless flow can be stopped. Use water in flooding quantities as fog. Solid streams of water may be ineffective. Cool all affected containers with flooding quantities of water. Apply water from as far a distance as possible. Use “alcohol” foam, dry chemical or carbon dioxide. Use waterspray to knock-down vapors.
Fire Fighting
Excerpt from ERG Guide 132 [Flammable Liquids – Corrosive]: Some of these materials may react violently with water. SMALL FIRE: Dry chemical, CO2, water spray or alcohol-resistant foam. LARGE FIRE: Water spray, fog or alcohol-resistant foam. Move containers from fire area if you can do it without risk. Dike fire-control water for later disposal; do not scatter the material. Do not get water inside containers. FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out.
Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn.
Use alcohol-resistant foam, powder, carbon dioxide. In case of fire: keep drums, etc., cool by spraying with water.
Other Fire Fighting Hazards
Vapors are heavier than air and may travel to a source of ignition and flash back.
Accidental Release Measures
Isolation and Evacuation
Cleanup Methods
ACCIDENTAL RELEASE MEASURES: Personal precautions, protective equipment and emergency procedures: Wear respiratory protection. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapors accumulating to form explosive concentrations. Vapors can accumulate in low areas. Environmental precautions: Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided. Methods and materials for containment and cleaning up: Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations.
1. Remove all ignition sources. 2. Ventilate area of spill or leak. For small quantities, absorb on paper towels. Evaporate in a safe place (such as a fume hood). Allow sufficient time for evaporating vapors to completely clear the hood ductwork. Burn the paper in a suitable location away from combustible materials. Large quantities can be collected and atomized in a suitable combustion chamber equipped with an appropriate effluent gas cleaning device.
Environmental considerations-land spill: Dig a pit, pond, lagoon, holding area to contain liquid or solid material. /SRP: If time permits, pits, ponds, lagoons, soak holes, or holding areas should be sealed with an impermeable flexible membrane liner./ Dike surface flow using soil, sand bags, foamed polyurethane, or foamed concrete. Absorb bulk liquid with fly ash, cement powder, or commercial sorbents. Apply “universal” gelling agent to immobilize spill. Neutralize with sodium bisulfate (NaHSO4).
Environmental considerations-water spill: Add sodium bisulfate (NaHSO4). If dissolved, in region of 10 ppm or greater concentration, apply activated carbon at ten times the spilled amount. Use mechanical dredges or lifts to remove immobilized masses of pollutants and precipitates.
Environmental considerations-air spill: Apply water spray or mist to knock down vapors. Vapor knockdown water is corrosive or toxic and should be diked for containment.
Disposal Methods
Generators of waste (equal to or greater than 100 kg/mo) containing this contaminant, EPA hazardous waste number U404 and D001, must conform with USEPA regulations in storage, transportation, treatment and disposal of waste.
SRP: Wastewater from contaminant suppression, cleaning of protective clothing/equipment, or contaminated sites should be contained and evaluated for subject chemical or decomposition product concentrations. Concentrations shall be lower than applicable environmental discharge or disposal criteria. Alternatively, pretreatment and/or discharge to a permitted wastewater treatment facility is acceptable only after review by the governing authority and assurance that “pass through” violations will not occur. Due consideration shall be given to remediation worker exposure (inhalation, dermal and ingestion) as well as fate during treatment, transfer and disposal. If it is not practicable to manage the chemical in this fashion, it must be evaluated in accordance with EPA 40 CFR
Part 261, specifically Subpart B, in order to determine the appropriate local, state and federal requirements for disposal.
Product: Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable.
Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material; Contaminated packaging: Dispose of as unused product.
/Absorb small spills with paper and/ burn the paper in a suitable location away from combustible materials. Large quantities can be reclaimed or collected & atomized in suitable combustion chamber equipped with appropriate effluent gas cleaning device.
Other Preventative Measures
ACCIDENTAL RELEASE MEASURES: Personal precautions, protective equipment and emergency procedures: Wear respiratory protection. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapors accumulating to form explosive concentrations. Vapors can accumulate in low areas. Environmental precautions: Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.
Precautions for safe handling: Avoid contact with skin and eyes. Avoid inhalation of vapor or mist. Use explosion-proof equipment. Keep away from sources of ignition – No smoking. Take measures to prevent the build up of electrostatic charge.
Appropriate engineering controls: Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.
Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove’s outer surface) to avoid skin contact with this product.
Trietil aminin özellikleri
Moleküler Formül: C6H15N; (C2H5) 3N
Moleküler Arlk: 101.193 g / mol
Kaynama noktas: 90 ° C (1013 hPa)
Younluk: 0,73 g / cm3 (20 ° C)
Patlama snr: 1.2 -% 9.3 (V)
Parlama noktas: -11 ° C
Ateleme scakl: 215 ° C
Erime Noktas: -115 ° C
pH deeri: 12.7 (100 g / l, H₂O, 15 ° C) (IUCLID)
Buhar basnc: 72 hPa (20 ° C)
Çözünürlük: 133 g / l
Formül: C6H15N / (C2H5) 3N
Moleküler kütle: 101.2
Kaynama noktas: 89 ° C
Erime noktas: -115 ° C
Bal younluk (su = 1): 0.7
Suda çözünürlük, 20 ° C’de g / 100ml: 17 (iyi)
Buhar basnc, 20 ° C’de kPa: 7.2
Bal buhar younluu (hava = 1): 3.5
Buhar / hava karmnn bal younluu 20 ° C’de (hava = 1): 1.2
Parlama noktas: -17 ° C c.c.
Kendiliinden tutuma scakl: 230 ° C
Patlayc limitler, havadaki vol%: 1.2-8
Octanol / su ayrma katsays log Pow olarak: 1.45
Uygulama
Trietil amin sentezi srasnda kullanlmtr:
• 5′-dimetoksitiltil-5- (fur-2-il) -2-deoksiüridin
• 3 ′ – (2-siyanoetil) diizopropilfosforamidit-5′-dimetoksitritil-5- (fur-2-il) -2′-deoksiüridin
• polietilenimin-600-p-siklodekstrin (PEI600-y-CyD)
Gliserol dikarbonatn hazrlanmas için, gliserol ve dimetil karbonat (DMC) arasnda transesterifikasyon reaksiyonu yoluyla homojen bir katalizör olarak kullanlabilir.
Genel açklama
Trietil amin bir alifatik amindir. Matriks destekli lazer desorpsiyon / iyonizasyon (MALDI) matrislerine eklenmesi, MALDI kütle spektrometrik (MS) görüntüleme srasnda uzamsal çözünürlük için gelitirilmi yetenee sahip effaf sv matrisler salar. Aktif Trietil aminin belirlenmesi için bir kafa-uzay gaz kromatografisi (GC) prosedürü farmasötik maddeler bildirilmitir. Bir younluk ve scaklk aral boyunca Trietil amin buharnn viskozite katsays ölçülmütür.
Trietil amin, genel olarak ksaltlm Et3N formülü N (CH2CH3) 3 olan kimyasal bileiktir. Ayrca TEA ksaltmasdr, ancak bu ksaltma, TEA’nn ortak bir ksaltma olduu trietanolamin veya tetraetilamonyum ile kartrlmamas için dikkatli bir ekilde kullanlmaldr. Amonyak andran güçlü bir balk kokusuna sahip renksiz uçucu bir svdr ve ayn zamanda alç bitkisinin kokusudr. Diizopropiletilamin gibi (Hünig’in taban), Trietil amin yaygn olarak organik sentezde kullanlr.
Sentez ve özellikleri
Trietil amin, amonyakn etanol ile alkilasyonu ile hazrlanr:
NH3 + 3 C2H5OH → N (C2H5) 3 + 3 H20
Protonlanm Trietil aminin pKa deeri 10.75’tir ve bu pH’ta tampon çözeltileri hazrlamak için kullanlabilir. Hidroklorür tuzu, Trietil amin hidroklorür (trietilamonyum klorür), renksiz, kokusuz ve higroskopik bir toz olup, 261 ° C’ye stldnda ayrr.
Trietil aminin laboratuar örnekleri, kalsiyum hidrürden damtlarak saflatrlabilir.
Uygulamalar
Trietil amin, bir baz olarak organik sentezde yaygn olarak kullanlr. Örnein, asil klorürlerden esterlerin ve amidlerin hazrlanmas srasnda yaygn olarak bir baz olarak kullanlr. Bu reaksiyonlar, trietilamonyum klorür olarak adlandrlan, tuz Trietil amin hidroklorit oluturmak üzere Trietil amin ile birleen hidrojen klorür üretimine yol açar. Bu reaksiyon, reaksiyon karmndan hidrojen kloriti uzaklatrr, bu reaksiyonlar tamamlanana kadar devam eder
(R, R ‘= alkil, aril):
R2NH + R’C (O) Cl + Et3N → R’C (O) NR2 + Et3NH + Cl-
Dier tersiyer aminler gibi, üretan köpüklerin ve epoksi reçinelerinin oluumunu katalize eder. Dehidrohalojenasyon reaksiyonlarnda ve Swern .oksidasyonlarnda da yararldr.
Trietil amin, karlk gelen dördüncül amonyum tuzu verecek ekilde kolayca alkillenir:
RI + Et3N → Et3NR + I-
Trietil amin, esas olarak, tekstil yardmclar ve dördüncül amonyum tuzlar için kuaterner amonyum bileiklerinin üretiminde kullanlmaktadr. Ayn zamanda, younlama reaksiyonlar için bir katalizör ve asit nötrletiricidir ve ilaç, böcek ilac ve dier kimyasallarn üretimi için bir ara ürün olarak faydaldr
Ni kullanr
Trietil amin, çeitli karboksilik asit içeren pestisitlerin tuzlarn vermek için kullanlr, örn. Triklopir ve 2,4-diklorofenoksiasetik asit Trietil amin, Drosophila melanogaster anestezisi için bir ürün olan FlyNap’in aktif maddesidir. [Atfta bulunulmas gereken] Trietil amin, sivrisinekleri ve vektör kontrol laboratuarlarnda sivrisinekleri anestezi etmek için kullanlr. Bu, tür tanmlamas srasnda mevcut olabilecek herhangi bir viral materyali korumak için yaplr.
Ürün Açklamas
Trietil amin (TEA), amonyak benzeri bir kokuya sahip renksiz bir svdr.
Uygulamalar / Kullanmlar
Ag kimyasal çözücüler
Tarm ara ürünleri
Alüminyum üretim
Kimyasallar ve petrokimyasallar
Elektronik kimyasallar
nsektisit int
Ara ürünler
madencilik
laç kimyasallar
reçineler
Taslak
N, N-dietiletanamin olarak da bilinen Trietil amin (formül: C6H15N), Trietil amin için tuzlama, oksidasyon, Hing Myers testi (Hisberg reaksiyonu) dahil olmak üzere, tersiyer aminlerin tipik özelliklerine sahip olan, en basit tri-sübstitüe edilmi üçüncül tersiyer amindir. yant verir. Soluk sar effaf bir svya, renksiz bir amonyak kokusuna sahip, havada hafifçe dumanlanm renksizdir. Kaynama noktas: 89.5 ℃, nispi younluk (su = 1): 0.70, nispi younluk (Hava = 1): 3.48, suda az çözünür, alkolde çözünür, eter. Sulu çözelti alkali, yancdr. Buhar ve hava patlayc karmlar oluturabilir, patlama limiti% 1.2 ila% 8.0 arasndadr. Güçlü bir tahri edici ile zehirlidir.
Kullanmlar
Trietil amin, Amonyak veya balk benzeri bir kokusu olan berrak, renksiz bir svdr. Su yaltm maddeleri ve katalizör, korozyon önleyici ve itici olarak kullanlr.
Temel olarak organik sentezde baz, katalizör, solvent ve hammadde olarak kullanlr ve genellikle Et3N, NEt3 veya TEA olarak ksaltlr. Fosgen polikarbonat katalizörü, tetrafloroetilenin polimerizasyon inhibitörü, kauçuk vulkanizasyon hzlandrcs, boya sökücüde özel çözücü, emaye sertletirici, yüzey aktif madde, antiseptik, slatc, bakterisit, iyon deitirici reçineler, boyalar, kokular, farmasötikler, yüksek Polimerler için kürleme ve sertletirme maddesi olarak ve deniz suyunun tuzdan arndrlmas için enerji yakt ve sv roket yaktlar.
Salk etkileri
Trietil amin, solunduunda ve deriden geçerek sizi etkileyebilir.
Temas cildi ve gözleri cildi tahri edebilir ve olas göz hasarna neden olabilir.
Maruz kalma göz, burun ve boaz tahri edebilir.
Teneffüs Trietil amin akcierleri tahri edebilir. Daha yüksek maruziyetler, akcierlerde (pulmoner ödem), medikal bir kaynamada sv birikmesine neden olabilir.
Trietil amin, cilt alerjisine neden olabilir.
Trietil amin karacier ve böbrekleri etkileyebilir.
Trietil amin yanc bir sv ve tehlikeli bir yangn tehlikesidir.
Kategori
Yanc svlar
Toksisite snflandrma
Toksik
Akut toksisite
Oral sçan LD50: 460 mg / kg; Oral Fare LD50: 546 mg / kg
Uyaran verileri
Gözler-tavan 250 mg iddetli
Patlayc tehlikeli özellikler
Hava ile kartrldnda patlayc olabilir
Yanclk tehlike özellikleri
Yangn, yüksek scaklk, oksidan, yanc ise yanma, zehirli azot oksitleri üretir.
Tanm
ChEBI: Her bir hidrojen atomunun bir etil grubu ile ikame edildii amonyak olan bir tersiyer amin.
Depolama özellikleri
Hazine havalandrma düük scaklkta kurutma, oksidantlardan ve asitlerden ayr depolanr.
Yangn söndürücü
Kuru, kuru kum, karbon dioksit, köpük
Mesleki standartlar
TWA 40 mg / metreküp
Genel açklama
Balk benzeri kokuya güçlü bir amonyak içeren berrak renksiz bir sv. Parlama noktas 20 ° F. Buharlar gözleri ve mukoza zarlarn tahri eder. Sudan daha az youn (6.1 lb / gal). Buharlar havadan ardr. Yakldnda zehirli azot oksitleri üretir.
Hava ve Su Reaksiyonlar
Son derece yanc. Suda çözünebilir.
Reaktivite Profili
Trietil amin, oksitleyici maddeler ile iddetli bir ekilde reaksiyona girer. Al ve Zn ile reaksiyona girer. Tuzlar art su oluturmak için ekzotermik reaksiyonlardaki asitleri nötralize eder. zosiyanatlar, halojene organikler, peroksitler, fenoller (asidik), epoksitler, anhidritler ve asit halojenürler ile uyumsuz olabilir. Yanc gaz halindeki hidrojen hidridler gibi güçlü indirgeyici maddeler ile birlikte üretilebilir.
Salk tehlikesi
Buharlar burun, boaz ve akcierleri tahri eder, öksürüe, boulmaya ve zor nefes almaya neden olur. Gözlerle temas ciddi yanklara neden olur. Kimyasal ile slanan giysiler cilt yanklarna neden olur.
Yangn tehlikesi
Yanc / yanc malzeme. Is, kvlcm veya alevle atelenebilir. Buharlar hava ile patlayc karmlar oluturabilir. Buharlar ateleme kaynana gidebilir ve geri dönebilir. Çou buhar havadan daha ardr. Yeryüzüne yaylacaklar ve alçak ya da dar alanlarda (kanalizasyon, bodrum, tank) toplanacaklar. Buhar patlama tehlikesi içeride, darda veya kanalizasyonda. Kanalizasyona aktlmas yangn veya patlama tehlikesi yaratabilir. Kaplar stldnda patlayabilir. Birçok sv sudan daha hafiftir.
Artma Yöntemleri
CaSO4, LiAIH4, Linde tip 4A moleküler elekler, CaH2, KOH veya K2CO3 ile kuru Trietil amin, daha sonra ya tek bana ya da BaO, sodyum, P2O5 ya da CaH2’den damtlr. Ayrca çinko tozundan azot altnda damtlmtr. Birincil ve ikincil aminlerin kalntlarn uzaklatrmak için, Trietil amin asetik anhidrit, benzoik anhidrit, ftalik anhidrit ile geri aktld, daha sonra damtld, CaH2 (amonyak içermeyen) veya KOH (veya aktive edilmi alümina ile kurutuldu) ile geri aktld ve tekrar damtld. Bir baka saflatrma metodu, 2 saat süreyle p-tolüensülfonil klorür ile geri aka tabi tutmay ve daha sonra damtmay içermitir. Grovenstein ve Williams [J Am Chem Soc 83 412 1961], Trietil amin (500 mL) benzoil klorür (30 mL) ile ilemden geçirildi, çökelti süzüldü ve 1 saat daha sv 30 mL benzoil klorür ile geri aktld. Soutulduktan sonra, sv süzüldü, damtld ve KOH topaklar ile birkaç saat beklemeye brakld.
Daha sonra kartrlm erimi potasyum ile geri aktld ve damtld. Trietil amin, hidroklorüre dönütürülmü (bkz. Brüt), EtOH’dan kristalize edilmi (m 254o’a), akabinde sulu NaOH ile serbest braklm, kat KOH ile kurutulmu ve N2 altnda sodyumdan damtlmtr.
Kullanmlar
Trietil amin, kimyasal sentezlerde katalitik bir çözücü olarak kullanlr; kauçuk için hzlandrc aktivatör olarak; gibi
bir korozyon inhibitörü; polimerler için bir sertletirme ve sertletirme maddesi olarak; bir itici olarak; Kuaterner amonyum bileiklerinin slanma, nüfuz etme ve su geçirmezlik ajanlarnn imalatnda; ve deniz suyunun tuzdan arndrlmas için.
Kaynaklar ve Potansiyel Maruziyet
Mesleki maruziyet, üretimi ve kullanm srasnda öncelikle soluma ve dermal temas yoluyla ortaya çkabilir.
Genel popülasyon, kontamine gdalarn alnmasndan Trietil amine maruz kalabilir; trietilami kaynatlm sr eti tespit edilmitir.
Kiisel Pozlamann Deerlendirilmesi
Trietil amine kiisel maruziyet ölçümü ile ilgili bilgi verilmedi.
Salk Tehlikesi Bilgileri
Akut Etkiler:
nsanlarn Trietil amin buharna akut maruziyeti, göz tahriine, korneal imeye ve halo görüüne neden olur.
nsanlar “mavi pus” görmekten ya da “dumanl görme” ye sahip olmaktan ikayet ediyorlar. Bu etkiler tersine çevrilebilir maruz kalmann ardndan.Akut maruziyet, insanlarda deri ve mukoza zarlarn tahri edebilir.
Sçan, fare ve tavanlarda akut hayvan testleri, orta derecede akut olmas için Trietil aminin olduunu göstermitir. inhalasyondan kaynaklanan toksisite, oral maruziyetten orta dereceden yüksek akut toksisiteye ve yüksek akut toksisiteye dermal maruz kalma.
içilerin Trietil amin buharna kronik maruz kalmasnn geri dönüümlü kornea ödemine neden olduu gözlenmitir.Kronik inhalasyon maruziyeti, sçanlarda nazal geçiin iltihaplanmasna neden olmutur. Akcierlerin interalveolar duvarlarnn kalnlamas, akcierlerin alveol boluklarnda mukus birikmesi ve ayrca, inhalasyon yoluyla kronik olarak maruz kalan sçanlarda hematolojik etkiler bildirilmitir.Tavanlarn kronik soluma maruziyetinin, akcierlerin, ödemlerin, orta peribronitlerin, vasküler kalnlamann, göz lezyonlarnn ve daha yüksek seviyelerde karacier, böbrek ve kalpte tahrie neden olduu bildirilmitir.
Trietil amin için Referans Konsantrasyon (RfC), sçanlarda nazal geçilerin iltihabna bal olarak metreküp bana (mg / m) 0.007 miligramdr. RfC, ömür boyu süren zararl olmayan öldürücü etki riski olmakszn, insan popülasyonuna (hassas altgruplar dahil) sürekli bir inhalasyon maruziyetinin bir tahminidir (belki de bir büyüklük srasna ilikin belirsizlik). Bu, dorudan bir risk tahmincisi deil, potansiyel etkileri ölçmek için bir referans noktasdr.
Pozlamalarda
RfC’den gittikçe daha büyük olan, olumsuz salk etkileri için potansiyel artar. RfC’nin üzerindeki yaam boyu maruz kalma, olumsuz bir salk etkisinin zorunlu olarak gerçekleecei anlamna gelmez.
EPA’nn konsantrasyon yant nedeniyle RfC’nin temel ald çalmalarda orta güveni vardr.
En düük gözlenen yan etki seviyesi (LOAEL) belirlenememi ve bir saniye bile belirsizdir.
tür kullanlmad; Veritabannda sadece tek bir üreme / geliimsel çalma olarak düük güven
oral yoldan olan ve bu nedenle inhalasyon risk deerlendirmesi için faydal deildir ve kronik deildir.
çalmalar var; ve sonuç olarak, RfC’de düük güven.
EPA, Trietil amin için bir Referans Doz (RfD) oluturmamtr.
Üreme / Geliimsel Etkiler:
nsanlarda Trietil aminin üreme veya geliimsel etkileri hakknda bilgi bulunmamaktadr. çme sularnda Trietil amine maruz kalan sçanlarda 3-jenerasyon çalmasnda üreme veya geliimsel etkiler bildirilmemitir; Ancak, bu çalmann snrlamalar vard.
Kanser Riski:
nsanlarda veya hayvanlarda Trietil aminin karsinojenik etkileri hakknda bilgi bulunmamaktadr.
EPA, potansiyel karsinojenisiteye göre Trietil amini snflandrmamtr.
Fiziki ozellikleri
Trietil amin için kimyasal formül C6H1N5’tir ve moleküler arl 101.19 g / mol’dür.
Trietil amin, suda az çözünür olan renksiz ve yanc bir sv olarak ortaya çkar.
Trietil amin, milyonda 0.48 parça (ppm) koku eii olan güçlü bir balk amonyak benzeri kokuya sahiptir.
Trietil amin için buhar basnc 31.5 ° C’de 400 mm Hg’dir ve log oktanol / su bölme katsays (log K ow) 1.45’dir
Trietil amin Formülü
Trietil amin (ayn zamanda TEA olarak da bilinir) organik sentezde kullanlan organik bir bazdr. Asit klorürlerden ester ve amid sentezinde büyük ölçüde kullanlr.
Formül ve yap: Trietil aminin kimyasal ve moleküler formülü srasyla N (CH2CH3) 3 ve C6H15N’dir. Ayrca Et3N olarak temsil edilir ve moleküler kütlesi 101.19 g mol-1’dir. Trietil amin, bir nitrojen atomuna (N) bal üç etil grubu (-CH2CH3) içeren bir tersiyer amindir. Kimyasal yaps, aadaki gibi, organik moleküller için kullanlan ortak sunumlarda yazlabilir.
Oluum: Trietil amin doada kolayca bulunmaz. Bununla birlikte, baz canl organizmalarda ksenobiyotik bileikler olarak bulunur. Bu organizmalar, deaminasyon ilemleri yoluyla, monoamin oksidaz enzimlerinden atlm katalize eder.
Hazrlk: Trietil amin çeitli yöntemlerle hazrlanabilir. Bununla birlikte, en geniletilmi yöntem, hidrojen ve Cu-Ni katalizörü varlnda, amonyakn etanol ile alkilasyonudur:
NH3 + 3 C2H5OH → N (C2H5) 3 + 3 H20
Etilamin ve dietilamin, bu reaksiyonun ikincil ürünleridir. Trietil amin ayrca, hidrojenasyon katalizörü araclyla asetaldehit, amonyak ve hidrojenden sentezlenebilir.
Fiziksel özellikler: Bir balk ve amonyak kokusuna sahip renksiz uçucu bir svdr. Younluu 0.726 g mL-1’dir ve kaynama noktas 88.8 ºC’dir. 20 ºC’de suda az çözünür. Etanol, karbon tetraklorür ve etil eterde çözünür ve aseton, benzen ve kloroformda çok çözünür.
Kimyasal özellikler: Trietil amin, zayf bir baz olarak kabul edilen bir alifatik amindir (pKah 10.75). Trietil amin, en basit tri-sübstitüe üniform amin svs (trimetilamin oda scaklnda renksiz bir gazdr) nedeniyle organik sentezlerde yaygn olarak kullanlr. Trietil amin stldnda zehirli buharlar azot oksitleri yayar.
Kullanm Alanlar: Trietil amin, organik baz olarak, ikincil aminden gelen hidrojenin çkarlmas, asil klorürlerden esterlerin ve amitlerin sentezinde kullanlr. Reaksiyon ürünleri bir kuaterner amonyum tuzu içerir:
R2NH + R’C (O) Cl + Et3N → R’C (0) NR2 + Et3NH + Cl-
Trietil amin, yaktlar, aditifler, ara ürünler, koruyucular, sürfaktanlar ve fungisitler gibi çok çeitli kimyasal bileikleri üretmek için kullanlr.
Salk etkileri / güvenlik tehlikeleri: Trietil amin son derece yanc ve andrcdr. Ayrca hava ile patlayc karmlar oluturur. Trietil amin, deriyi, gözleri ve solunum sistemini yakabilir. Güçlü oksitleyiciler, güçlü asitler ve halojene bileiklerle uyumsuzdur.
Uygulamalar: Trietil amin, ters fazl yüksek performansl sv kromatografisi (HPLC) ile asidik bazik ve nötr ilaçlarn ayrtrlmas için yaran bir baz olarak kullanlr. Trietil amin, insanlarda (1) görsel rahatszlklara (örnein, sisli görme) yol açar ve ayrca sanayide, alkenlerin ozonolizinde bir söndürme maddesi olarak kullanlr (örn. (E) -2-Pentene [P227315]). Trietil amin, ters faz HPLC’de ayrma yoluyla farmakolojik veya kimyasal olarak benzer olan ilaçlarn saflatrlmasnda kullanlr (2). Amerika Birleik Devletleri Çevre Koruma Ajans (EPA) uyarnca içme suyu kirletici aday listesi 3 (CCL 3) bileii. Çevresel kirleticiler; Gda bulakanlar.
Trietil amin, asidik, bazik ve nötr ilaçlarn RP-HPLC ile ayrlmasnda bir mobil faz deitiricidir. Kuyruklamay basklayarak HPLC ile amino asit ve amino asit amidlerinin çözünürlüünü gelitirir. Trietil amin, asil klorürlerden esterlerin ve amitlerin hazrlanmasnda organik sentezde yaygn olarak kullanlr.
Dehidrohalojenasyon reaksiyonlarnda ve Swern oksidasyonlarnda da yararldr.
Trietil amin (TEA) çok yaygn kullanlan bir organik bazdr. Diizopropiletilamin (DIEA) yakndan ilikili bir organik bazdr. DIEA, TEA’dan daha fazla sterik olarak engellenmitir, bu nedenle yüksek derecede reaktif alkilleme ajanlar ile kullanldnda kuaternizasyona daha az eilimlidir. TEA, 89 ° C’lik bir kaynama noktasna sahiptir ve rotovap distilasyonu yoluyla çkarlmasn kolaylatrr. DIEA’nn kaynama noktas 127 C’dir, bu da 90 ° C’nin üzerindeki reaksiyonlar için daha yararldr. Çou durumda, TEA ve DIEA, birbirinin yerine kullanlabilir. Ancak, belirli durumlar için biri dierinden daha iyi bir seçimdir.
(C2H5) 3N veya NET3 olarak da bilinen Trietil amin, trialkilaminler olarak bilinen organik bileiklerin snfna aittir. Bunlar, amino nitrojene bal tam olarak üç alkil grubuyla karakterize edilen bir trialkilamin grubu içeren organik bileiklerdir. Trietil amin bir kat, çözünür (su içinde) ve çok güçlü bir bazik bileik (pKa’sna dayanarak) olarak bulunur. Hücre içerisinde Trietil amin öncelikle sitoplazmada bulunur. Trietil amin ayrca 2-dietilaminoetanol, NTA
ve trietanolamin dahil ancak bunlarla snrl olmamak üzere dier transformasyon ürünleri için bir ana bileiktir. Trietil amin, bir amonyak ve balk tad
vardr.
Hava ve Su Reaksiyonlar
Son derece yanc. Suda çözünebilir.
Yangn tehlikesi
Yanc / yanc malzeme. Is, kvlcm veya alevle atelenebilir. Buharlar hava ile patlayc karmlar oluturabilir. Buharlar ateleme kaynana gidebilir ve geri dönebilir. Çou buhar havadan daha ardr. Yeryüzüne yaylacaklar ve alçak ya da dar alanlarda (kanalizasyon, bodrum, tank) toplanacaklar. Buhar patlama tehlikesi içeride, darda veya kanalizasyonda. Bir (P) ile belirtilen maddeler stldnda veya bir yangna kartnda patlayc olarak polimerize olabilirler. Kanalizasyona aktlmas yangn veya patlama tehlikesi yaratabilir. Kaplar stldnda patlayabilir. Birçok sv sudan daha hafiftir.
Salk tehlikesi
Buharlar burun, boaz ve akcierleri tahri eder, öksürüe, boulmaya ve zor nefes almaya neden olur. Gözlerle temas ciddi yanklara neden olur. Kimyasal ile slanan giysiler cilt yanklarna neden olur.
Reaktivite Profili
trietil amin oksitleyici ajanlarla iddetli reaksiyona girer. Al ve Zn ile reaksiyona girer. Tuzlar art su oluturmak için ekzotermik reaksiyonlardaki asitleri nötralize eder. zosiyanatlar, halojene organikler, peroksitler, fenoller (asidik), epoksitler, anhidritler ve asit halojenürler ile uyumsuz olabilir. Yanc gaz halindeki hidrojen hidridler gibi güçlü indirgeyici maddeler ile birlikte üretilebilir.
Koruyucu giysi
Cilt: Cildin temasn önlemek için uygun kiisel koruyucu kyafet giyin.
Gözler: Gözle temas önlemek için uygun göz korumas takn.
Cildi ykayn: çi kirlendiinde derhal derhal ykamaldr.
Çkarma: Islanan i kyafeti yanclk tehlikesi nedeniyle hemen çkarlmaldr (örn. Parlama noktas <100 ° F olan svlar için).
Deiim: çinin i vardiyasndan sonra giysiyi deitirmesi gereini belirten bir öneride bulunulmamtr.
Salayn: çilerin maddeye maruz kalma olaslnn bulunduu alanlarda göz ykama çemeleri salanmaldr (konsantrasyon% 1 olduunda); Bu, göz korumasnn taklmasn içeren tavsiyeden bamszdr. Vücudun çabucak slatlmas için tesisler, acil durumlarda, maruz kalma olasl olan acil kullanm alan içinde salanmaldr (konsantrasyon% 1 olduunda). [Not: Bu tesislerin, maddeyi, maruz kalabilecekleri herhangi bir vücut bölgesinden hzlca çkarmak için yeterli miktarda su veya ak salamas amaçlanmtr. Yeterli bir hzl kanalizasyon tesisinin neyi oluturduunun gerçek belirlenmesi, belirli koullara baldr. Baz durumlarda, bir saanak duu kolayca bulunabilmeli, dierlerinde ise, bir lavabonun veya hortumun suyunun uygunluu yeterli kabul edilebilir.
lk yardm
GÖZLER: Önce kontakt lensleri kontrol edin ve varsa çkarn. Ayn anda bir hastane veya zehir kontrol merkezini çarrken kurbann gözlerini 20 ila 30 dakika boyunca su veya normal tuzlu suyla ykayn. Bir doktorun özel talimatlar olmakszn kurbann gözlerine hiçbir merhem, ya veya ilaç koymayn.
HATIRLATMAYIN Herhangi bir semptom (kzarklk veya tahri gibi) gelimemi olsa bile, gözleri kzardktan sonra hastaneye götürün.
CLT: HEMEN sürülen cildi tüm kirli giysileri çkarrken ve izole ederken su ile etkiledi. Etkilenen tüm cilt bölgelerini nazikçe sabun ve suyla ykayn.
HEMEN herhangi bir semptom (kzarklk veya tahri gibi) gelimese bile bir hastane veya zehir kontrol merkezini çarr. Etkilenen bölgeleri ykadktan sonra kurban tedavi için hastaneye nakledin.
SOLUMA: HEMEN kirli bölgeyi terk edin; temiz hava derin nefes al. Semptomlar (hrltl solunum, öksürük, nefes darl veya azda, boazda veya gösünde yanma gibi) geliirse, bir doktora bavurunuz ve kurban bir hastaneye götürmeye hazr olun. Bilinmeyen bir atmosfere giren kurtarclar için uygun solunum korumas salayn. Mümkünse, Bamsz Solunum Aparat (SCBA) kullanlmaldr; Mevcut deilse, Koruyucu Giysiler kapsamnda tavsiye edilene eit veya ondan daha büyük bir koruma seviyesi kullann.
YUTMA: VOMITING ÇMEYN. Andrc kimyasallar az, boaz ve yemek borusu zarlarn tahrip eder ve ayrca, kusma srasnda madurun akcierlerine aspirasyon riski tar ki bu da tbbi sorunlar arttrr. Madur bilinçli ise ve sarslmazsa, kimyasal maddeyi sulandrmak için 1 veya 2 bardak su verin ve
HEMEN bir hastane veya zehir kontrol merkezi arayn. HATIRLATMAK Kurban bir hastaneye nakledin. Eer madur uyuukluk veya bilinçsiz ise, azdan bir ey vermeyin, madurun hava yolunun açk olduundan emin olun ve kurban vücudun alt ksmndan aa gelecek ekilde kurcalayn. VOMITING ÇMEYN. Kurban TAMAMEN bir hastaneye nakletme
Trietil amin, ters faz HPLC ayrmalarnda seçicilii deitiren bir iyon çiftletirici reaktiftir. Peptidlerle eletirerek, zirveleri etkili bir ekilde keskinletirir, sonuçta tepe noktas çözünürlüü artar.
Özellikleri:
>% 99.5 Trietil amin safl, ters fazl HPLC peptid ayrma sistemlerinde düük UV dalga boylarnda hassas peptid tespitine izin verir. Reaktif bütünlüü için koruyucu PTFE kapl florokarbon kapakl amber cam ielerde paketlenir
Tüm dalga boylarnda en hassas alglama salamak için düük bir UV absorbans vardr
KÖK ATII
Tehlikeli alan boaltn! Bir uzmana dann! Kiisel korunma: Kendinden hava salayan solunum aparatlar dahil komple koruyucu kyafetler. Havalandrma. Tüm ateleme kaynaklarn çkarn. Bu kimyasaln çevreye girmesine izin VERMEYN. Szdran ve dökülen svy szdrmaz kaplarda mümkün olduunca toplayn. Kalan svy kum veya inert absorbanda emdirin. Daha sonra yerel düzenlemelere göre saklayn ve atn.
Fiziksel durum; Görünüm
KAREKTERSTK KOKULU RENKSZ SIVI.
Fiziksel tehlikeler
Buhar, havadan ardr ve zeminde dolaabilir; uzak ateleme mümkündür.
Kimyasal tehlikeler
Yanma üzerine ayrr. Bu azot oksitleri içeren tahri edici ve zehirli gazlar üretir. Madde güçlü bir bazdr. Asitle iddetli reaksiyona girer ve nem varlnda alüminyum, çinko, bakr ve alamlarna andrcdr. Güçlü oksitleyicilerle iddetli ekilde reaksiyona girer. Bu yangn ve patlama tehlikesi oluturur. Plastik, kauçuk ve kaplamalarn baz formlarna saldrr.
Ksa süreli maruz kalmann etkileri
Bu madde göz, cilt ve solunum sistemini tahri eder. Yutulduunda andrc. Solunmas akcier ödemine neden olabilir. Notlar görmek. Etkiler gecikebilir. Tbbi gözlem belirtildi. Bu madde merkezi sinir sistemi üzerinde etkilere neden olabilir.
Açklama
Trietil amin, ters faz HPLC ayrmalarnda seçicilii deitiren bir iyon çiftletirici reaktiftir. Peptidlerle eletirerek, zirveleri etkili bir ekilde
keskinletirir, sonuçta tepe noktas çözünürlüü artar.
Özellikleri:
>% 99.5 Trietil amin safl, ters fazl HPLC peptid ayrma sistemlerinde düük UV dalga boylarnda hassas peptid tespitine izin verir. Reaktif bütünlüü için koruyucu PTFE kapl florokarbon kapakl amber cam ielerde paketleniTüm dalga boylarnda en hassas alglama salamak için düük bir UV absorbans vardr
Trietil aminin Özellikleri
Alternatif isimler TEA, Diethylethanamine Molecular formula C6H15N Moleküler arlk 101.19 Younluk 0.726g / mL
Trietil amin
Trietil amin, aadaki formüle sahip bir sentetik kimyasal bileiktir: N (CH2CH3) 3. Bu formül genellikle Et3N veya TEA olarak ksaltlr. Bununla birlikte, “TEA” ksaltmas, trietanolamin veya tetraetil amonyum ile karkl önlemek için dikkatli bir ekilde kullanlmaldr. Bir hidroklorür tuzu olarak, güçlü bir “balk” kokusuna sahip renksiz, uçucu bir sv maddedir.
TEA, etanolün amonyakla alkalize edilmesiyle oluturulur. Bir hidroklorür tuzu olarak Trietil amin, su moleküllerini çok kolay çeken ve tutan bir kokusuz, renksiz bir tozdur. Bu formda TEA, 261 santigrat derece ortam scaklnda ayrr.
TEA, dier kimyasal bileiklerin organik sentezinde yaygn olarak kullanlan bir bazdr. Bu özellikle açil klorür ve esterlerden elde edilen amitler için geçerlidir. Endüstriyel alanda, TEA öncelikle tekstil ürünleri için quatemary amonyum (“QAs”) ve çeitli kuma boyalarnn QA tuzu türevlerini üretmek için kullanlr.Ayn zamanda, bir asit nötrletirici ve kimyasal katalizör olarak da ilev gördüü için, çou zaman pestisit ve ilaç üretimi için bir ara kapasitede kullanlr.
Trietil amin, amonyak andran güçlü bir kokuya sahip renksiz uçucu bir svdr ve ayn zamanda alç bitkisinin kokusudr. Genel olarak organik sentezde bir baz olarak kullanlr, çou zaman asil klorürlerden esterlerin ve amitlerin hazrlanmasnda kullanlr.
FARMAKOLOJ VE BYOKMYA
Emilim, Dalm ve Boaltm
Endüstriyel olarak önemli bileik Trietil amin (TEA) ve onun metaboliti Trietil amin-N-oksit (TEAO) farmakokinetii, oral ve intravenöz uygulamadan sonra dört gönüllüde incelenmitir. TEA, gastrointestinal sistemden (GI) etkili bir ekilde emildi, hzla dald ve ksmen TEAO’ya metabolize edildi. Önemli bir ilk geçi metabolizmas yoktu. TEAO da GI yolundan iyi emilmiti. G kanalnda TEAO, TEA’ya (% 19) indirildi ve dietilamine (DEA;% 10) dahil edildi. Bertaraf aamasndaki görünür dalm hacimleri TEA için 192 litre ve TEAO için 103 litredir. Gastrik entübasyon, plazma ve gastrik svdaki TEA seviyeleri arasnda yakn bir iliki olduunu gösterdi, bu oranlar 30 kat daha yüksekti. Plazmada TEA ve TEAO, srasyla yaklak 3 ve 4 saat yar ömürleri vard. TEA ekshalasyonu minimaldi. Dozun% 90’ndan fazlas, idrarda TEA ve TEAO olarak geri kazanld. TEA ve TEAO’nun idrar boluklar glomerüler filtrasyona ek olarak tübüler sekresyonun gerçekletiini belirtmitir. TEAO için yüksek seviyelerde, salgnn doyurucu olduu görülmektedir. Mevcut veriler, daha önceki çalmalarla kombinasyon halinde, TEA ve TEAO’nun idrardaki toplamnn, TEA’ya maruziyetin biyolojik izlenmesi için kullanlabileceini göstermektedir.Çalmann amac, souk kutu çekirdek yapmnda Trietil amin (TEA) maruziyetini deerlendirmek ve maruziyet deerlendirmesinde üriner TEA ölçümünün uygulanabilirliini aratrmakt. Hava örnekleri, aktif kömürle doldurulmu cam tüpler araclyla hava pompalanmasyla toplanm ve ön ve sonraki vites numuneleri toplanmtr. TEA konsantrasyonlar gaz kromatografisi ile belirlenmitir. Hava ve idrar örneklerinde ayn vardiyadan TEA ölçüldü. Üç dökümhanede 19 içinin solunum zon ölçümleri çalmaya alnd ve ayn dökümhanelerde sabit ve sürekli hava ölçümleri yapld. Pre ve post-shift idrar örnekleri TEA ve Trietil amin-N-oksit (TEAO) konsantrasyonlar için analiz edildi. Çekirdek yapclarn nefes alma bölgesinde TEA konsantrasyon aral 0.3
METABOLZMA
Trietil amin gibi endüstriyel olarak önemli alifatik aminlerin metabolizmas hakknda çok az çalma yaplmtr.
tehlikelerin Özeti
nsanlarn Trietil amin buharna akut (ksa süreli) maruz kalmas, göz tahriine, korneal imeye ve halo görüüne neden olur. nsanlar “mavi pus” görmekten ya da “dumanl görme” ye sahip olmaktan ikayet ediyorlar. Bu etkiler maruziyetin sona ermesi üzerine tersine çevrilebilir. Akut maruziyet, insanlarda deri ve mukoza zarlarn tahri edebilir. çilerin Trietil amin buharna kronik (uzun süreli) maruz kalmann geri dönüümlü kornea ödemine neden olduu gözlenmitir. Kronik inhalasyon maruziyeti, sçanlarda ve tavanlarda solunum ve hematolojik etkiler ve göz lezyonlar ile sonuçlanmtr. nsanlarda Trietil aminin reprodüktif, geliimsel veya kanserojen etkileri hakknda bilgi bulunmamaktadr. EPA, potansiyel karsinojenisiteye göre Trietil amini snflandrmamtr.
Kimyasal Tehlikeler
200 ppm
Yanma üzerine ayrr. Bu azot oksitleri içeren tahri edici ve zehirli gazlar üretir. Madde güçlü bir bazdr. Asitle iddetli reaksiyona girer ve nem varlnda alüminyum, çinko, bakr ve alamlarna andrcdr. Güçlü oksitleyicilerle iddetli ekilde reaksiyona girer. Bu yangn ve patlama tehlikesi oluturur. Plastik, kauçuk ve kaplamalarn baz formlarna saldrr.
NIOSH Önerileri
NIOSH, OSHA’nn Trietil amin için önerdii PEL’in içileri bilinen salk tehlikelerinden korumak için yeterli olup olmadn sorgulad: TWA 10 ppm; STEL 15 ppm.
La triéthylamine
Caractéristiques
Utilisations
Edition Mise à jour 2015
Formule :
Etiquette
TRIÉTHYLAMINE
Danger
H225 – Liquide et vapeurs très inflammables
H332 – Nocif par inhalation
H312 – Nocif par contact cutané
H302 – Nocif en cas d’ingestion
H314 – Provoque des brûlures de la peau et des lésions oculaires graves
Les conseils de prudence P sont sélectionnés selon les critères de l’annexe 1 du réglement CE n° 1272/2008.
204-469-4
Selon l’annexe VI du règlement CLP.
ATTENTION : pour les mentions de danger H 332, H 312 et H 302, se reporter à la section “Réglementation”.
Base de données FICHES TOXICOLOGIQUES
www.inrs.fr/fichetox Triéthylamine – Edition : Mise à jour 2015 Page 2 / 8
Propriétés physiques
Nom Substance Détails
Triéthylamine N° CAS 121-44-8
Etat Physique Liquide
Masse molaire 101,19
Point de fusion -115 °C
Point d’ébullition 89,5 °C à la pression atmosphérique
Densité 0,728
Densité gaz / vapeur 3,5
Pression de vapeur 7,2 kPa à 20 °C
Indice d’évaporation 5,6
Point d’éclair -7 à -17 °C (coupelle fermée)
Température d’autoinflammation
230 °C
Base pour la préparation d’agents tensioactifs (sels d’ammonium quaternaire).
Agent solubilisant pour résines (peintures hydrosolubles), produits phytosanitaires et divers composés organiques à caractère acide.
Catalyseur de réticulation pour résines synthétiques (polyuréthanes, époxydiques ; procédé de noyautage en boîte froide en fonderie).
Stabilisant des hydrocarbures, chlorés ou non, et des cétones non saturées.
Solvant extractif, notamment pour la purification d’antibiotiques.
Intermédiaire ou catalyseur en synthèse organique.
[1 à 7]
La triéthylamine est un liquide mobile, incolore, à forte odeur ammoniacale (seuil olfactif : 0,5 ppm). Elle est miscible à l’eau aux températures inférieures à 18 °C, mais
n’est que partiellement soluble à des températures supérieures (5,5 g/100 g d’eau à 30 °C). Avec l’eau, elle forme un azéotrope contenant 13 % d’eau et dont le point
d’ébullition est de 75 °C à pression atmosphérique.
Elle est miscible à l’éthanol et à l’oxyde de diéthyle, et soluble dans un grand nombre d’autres solvants organiques (alcools, cétones, éthers).
À 25 °C et 101,3 kPa, 1 ppm = 4,13 mg/m 3.
[1, 2, 4, 5]
des composés
explosifs avec les amines.
La pyrolyse ou la combustion de la triéthylamine libèredes composés toxiques (notamment oxydes d’azote et oxyde de carbone).
Le stockage de la triéthylamine s’effectue généralement dans des récipients en acier (ordinaire ou inoxydable). Le cuivre, l’aluminium, le zinc et certaines matières
plastiques sont à éviter. Le verre est utilisable pour de petites quantités, sous réserve d’une protection par une enveloppe métallique convenablement ajustée.
Toutefois, en raison de la basicité du produit, une attaque du verre est possible en cas de stockage prolongé.
[8, 9]
Base de données FICHES TOXICOLOGIQUES
www.inrs.fr/fichetox Triéthylamine – Edition : Mise à jour 2015 Page 3 / 8
Substance Pays VME (ppm) VME (mg/m³) VLCT (ppm) VLCT (mg/m³)
Triéthylamine France ( VLEP réglementaires contraignantes – 2007 ) 1 4,2 3 12,6
Triéthylamine Union européenne ( 2007 ) 2 8,4 3 12,6
Triéthylamine Etats-Unis ( ACGIH – 1995 ) 1 4,2 3 12,6
Triéthylamine Allemagne ( Valeurs MAK ) 1 4,2 – –
Méthodes de détection et de détermination dans l’air
Incendie – Explosion
Pathologie – Toxicologie
Toxicocinétique – Métabolisme
Chez l’animal
Surveillance biologique de l’exposition
Toxicité expérimentale
Toxicité aigüe
Des valeurs limites d’exposition professionnelle contraignantes dans l’air des lieux de travail ont été établies en France pour la triéthylamine (article R. 4412.149 du
Code du travail).
Prélèvement au travers d’un tube rempli d’un polymère poreux (CHROMOSORB P) imprégné d’acide sulfurique. Désorption par une solution (eau/méthanol
90/10) de soude. Dosage par chromatographie en phase gazeuse avec détection thermoïonique [10].
®
[1, 3, 5 à 7, 11 à 13]
La triéthylamine est un liquide très inflammable (point d’éclair : – 7 °C à – 17 °C en coupelle fermée) qui peut former des mélanges explosifs avec l’air (dans les limites de 1,2
à 8 % en volume).
Les agents d’extinction préconisés sont préférentiellement les mousses anti-alcool, les poudres chimiques, le dioxyde de carbone. En général, l’eau n’est pas recommandée
mais elle pourra toutefois être utilisée sous forme pulvérisée pour refroidir les récipients clos exposés au feu.
En raison de la toxicité des gaz émis lors de la décomposition thermique du produit, les intervenants seront équipés d’appareils de protection respiratoire autonomes
isolants.
La triéthylamine est bien absorbée par voies digestive, respiratoire et cutanée. Elle est partiellement métabolisée au niveau hépatique et la substance et son
métabolite sont éliminés par voie urinaire.
L’expérimentation animale démontre que la triéthylamine est absorbée facilement à partir du tractus gastro-intestinal ou du tractus respiratoire comme par voie
percutanée.
La toxicocinétique et le métabolisme du produit ont été récemment étudiés chez l’homme dans le cas de l’inhalation. Cinq sujets ont été exposés 4 à 8 heures à des
concentrations de produit comprises entre 2,5 et 12,5 ppm [14].
Les points suivants ont pu être établis :
la fraction de produit absorbée est très importante (80 % du produit inhalé)
le taux plasmatique du produit baisse rapidement après la fin de l’exposition (demi-vie : 3,2 heures) ;
la seule biotransformation mise en évidence est une oxydation en N-oxyde de triéthylamine, vraisemblablement sous l’action d’une mono-oxydase flavinedépendante : il n’y a pas de déalcoylation ;
une fraction seulement de l’amine est oxydée (24 % en moyenne avec de larges variations interindividuelles) ;
la triéthylamine et son métabolite sont éliminés dans les urines dont ils ne sont pas des constituants normaux (contrairement à l’éthylamine) ;
il existe une très bonne corrélation entre la concentration atmosphérique inhalée et le taux urinaire du produit 2 heures après la fin de l’exposition.
En présence de nitrite ou d’un autre agent nitrosant, la triéthylamine peut donner naissance à de la diéthylnitrosamine considérée comme cancérogène. Aucune
preuve n’a été apportée de l’existence d’une telle réaction dans l’estomac, même dans le cas d’un apport de nitrite exogène.
L’action exercée par la triéthylamine sur le système nerveux central est liée, au moins en partie, à son activité inhibitrice vis-à-vis de la monoamine-oxydase cérébrale
impliquée dans la régulation du taux cérébral de sérotonine [15].
La triéthylamine étant facilement absorbée par voies respiratoire mais aussi cutanée, une surveillance biologique peut être utile.
Le dosage de la triéthylamine dans les urines en fin de poste et fin de semaine de travail a été proposé pour la surveillance biologique des salariés exposés, mais
elle n’est pas de pratique courante. Une bonne corrélation a été montrée avec l’intensité de l’exposition de la journée. Pour la triéthylamine urinaire, il n’existe pas de
valeur biologique de référence pour la population professionnellement exposée [16].
[15, 17 à 24]
Les effets aigus sont liés au caractère alcalin de la substance qui provoque de graves troubles digestifs, respiratoires et une irritation de la peau et des muqueuses
Base de données FICHES TOXICOLOGIQUES
www.inrs.fr/fichetox Triéthylamine – Edition : Mise à jour 2015 Page 4 / 8
Toxicité subchronique, chronique
Effets génotoxiques
Effets cancérogènes
Effets sur la reproduction
Toxicité sur l’Homme
Les effets aigus sont liés au caractère alcalin de la substance qui provoque de graves troubles digestifs, respiratoires et une irritation de la peau et des muqueuses
oculaires. Certains effets sont irréversibles.
La DL50 par voie orale chez le rat est comprise entre 460 et 590 mg/kg ; elle est de 545 mg/kg chez la souris et de 415 mg/kg chez le lapin. Par voie percutanée, la DL50
chez le lapin est de 570 mg/kg.
Par inhalation, pour une exposition de 4 heures, la plus faible concentration létale chez le rat, comme chez le cobaye, est de 1 000 ppm ; chez le cobaye, elle est
supérieure à 2 000 ppm pour une exposition de 30 minutes.
Chez la souris, pour une exposition de 2 heures, la CL50 est comprise entre 1 500 et 2 500 ppm.
À l’autopsie, on met en évidence des lésions diffuses des poumons, du foie et des reins.
Localement, 500 mg de produit appliqués sur la peau du lapin sous pansement occlusif maintenu pendant 24 heures provoquent une irritation légère (lésions de
grade 2 sur 10). Chez la souris, l’immersion de la queue dans la triéthylamine entraîne, en 15 à 30 minutes, la mort des animaux.
La triéthylamine est particulièrement irritante pour l’oeil : une goutte de liquide pur instillée dans l’oeil du lapin provoque des lésions cornéennes extrêmement
sévères (lésions de grade 9 sur 10) ; l’action du produit est très rapide.
[15, 17 à 19, 25]
L’inhalation répétée de faibles concentrations peut induire des lésions pulmonaires, cardiaques, hépatiques et rénales.
Chez le rat, l’administration orale de triéthylamine à la dose de 55 mg/kg/jour pendant 2 mois et demi entraîne un retard de croissance et une augmentation du taux
hépatique d’acide ascorbique. La dose de 10 mg/kg/jour, administréependant 6 mois, est responsable de modifications marquéesdes réflexes conditionnés ; à 1
mg/kg, on constate encoredes modifications mineures de ces réflexes.
Chez le lapin, l’administration orale du produit, à la dosede 6 mg/kg/jour, pendant 7 mois, ne modifie ni l’activité hépatique de synthèse protéique, ni l’activité
cholinestérasique du sérum ; on note seulement, après 3 à 4 mois detraitement, des perturbations du métabolisme hépatiquedes hydrates de carbone.
Chez des lapins exposés 7 heures par jour, 5 jours par semaine, pendant 6 semaines, à une concentration atmosphériquede 100 ppm de triéthylamine, on observe
des lésions pulmonaires sévères (oedème avec hémorragies, bronchopneumonie), des lésions de la cornée (multiples érosions ponctuées, oedème) et des lésions
cardiaques, hépatiques et rénales (pour les 3 organes : hyperémie, oedème, dégénérescence marquée avec nécrose cellulaire) ; celles-ci sont plus fréquentes et plus
prononcées qu’elles ne le sont, dans ces mêmes conditions, avec l’éthylamine ou la diéthylamine. À 50 ppm, tous les animaux présentent des signes d’irritation
pulmonaire (bronchite modérée, léger épaississement des parois vasculaires) et des lésions de la cornée ; on note des lésions hépatiques légères (atteintes
dégénératives du parenchyme).
[15, 20]
Les données sont insuffisantes pour juger de ces effets.
La seule étude publiée sur ce sujet signale des mutations génomiques (perte de chromosomes au cours de la division cellulaire) chez des rats exposés en continu
pendant 1 mois à une concentration de 0,25 ppm. Elle est insuffisante pour l’évaluation d’un éventuel potentiel génotoxique du produit.
[15]
La triéthylamine entraîne des perturbations de la fertilité chez les femelles. Elle est embryotoxique et tératogène sur l’oeuf de poulet.
L’administration par voie orale de triéthylamine à des lapines gestantes, à la dose quotidienne de 2,3 mg/kg, les 3 premiers jours de gestation, entraîne des
perturbations de la fertilité.
Chez l’embryon de poulet de 3 jours, le produit est fortement embryotoxique (DL50 : 0,16 mg/oeuf) et l’on constate une incidence importante de malformations,
principalement des défauts des yeux, du squelette et du cerveau.
L’inhalation provoque une irritation des muqueuses oculaires et respiratoires parfois sévères. On peut voir apparaître des troubles visuels. Le contact avec la peau
peut provoquer des brûlures et le contact avec les yeux de graves lésions irréversibles. Des dermatoses allergiques ont été rapportées. On ne dispose pas de données
sur les effets cancérogènes ou la toxicité pour la reproduction chez l’homme.
17, 26]
L’exposition répétée à la triéthylamine est susceptible de provoquer des allergies cutanées (dermatoses eczématiformes) ou respiratoires (asthmes).
La triéthylamine trietil amin (TEA) ou N,N-diéthyléthanamine est un composé chimique de formule brute N(CH2CH3)3, couramment noté Et3N ou NEt3. Au laboratoire, on l’appelle souvent “trièth” ([tʁiɛt]) mais cela reste réservé à un usage trivial et oral du nom. On la rencontre fréquemment en synthèse organique et ce parce qu’elle constitue l’amine tertiaire symétrique la plus simple liquide à température ambiante. Elle présente une forte odeur de poisson proche de celle de l’ammoniac. La triéthylamine est basique mais aussi très nucléophile. Lorsque la nucléophilie est un problème, on utilise souvent la diisopropyléthylamine (DIPEA) qui est beaucoup plus encombrée et donc moins nucléophile.
La triéthylamine est communément employée en synthèse organique comme une base, par exemple dans la préparation des esters et amides à partir des chlorures d’acide.
Schéma réactionnel décrivant les réactions de formation d’un ester et d’un amide à partir d’un chlorure d’acyle. L’acide chlorhydrique qui se forme est piégé sous forme de sel.
Dans ces réactions, La triéthylamine fait plus que se combiner avec l’acide chlorhydrique généré (formant un sel, le chlorhydrate de triéthylammonium) puisqu’elle intervient aussi comme activateur : étant très nucléophile, elle se combine avec le chlorure d’acide pour former un composé encore plus électrophile que le chlorure d’acide de départ et auquel un alcool ou une amine peuvent facilement s’additionner.
Comme les autres amines tertiaires, Et3N catalyse la formation des mousses polyuréthanes et des résines époxy. Elle est aussi très utile dans les réactions de ß-élimination.
Elle est également utilisée dans les oxydations de Swern :
Mécanisme réactionnel de l’oxydation de Swern.Seconde partie du mécanisme réactionnel de l’oxydation de Swern.
La triéthylamine s’alkyle facilement pour donner l’ammonium quaternaire correspondant :
Schéma réactionnel décrivant le mécanisme d’alkylation de La triéthylamine par un dérivé iodé.
Alkylation de la triéthylamine .
Séchage de la triéthylamine
Pour obtenir de La triéthylamine anhydre, celle-ci est distillée à pression atmosphérique sur de l’hydroxyde de potassium (KOH) puis stockée sur du tamis moléculaire à 3 ou 4Å. La triéthylamine résultante contient environ 25 ppm d’eau
Caractéristiques
Utilisations [1 à 5]
Base pour la préparation d’agents tensioactifs (sels d’ammonium quaternaire).
Agent solubilisant pour résines (peintures hydrosolubles), produits phytosanitaires et divers composés organiques à caractère acide.
Catalyseur de réticulation pour résines synthétiques (polyuréthanes, époxydiques ; procédé de noyautage en boîte froide en fonderie).
Stabilisant des hydrocarbures, chlorés ou non, et des cétones non saturées.
Solvant extractif, notamment pour la purification d’antibiotiques.
Intermédiaire ou catalyseur en synthèse organique.
Propriétés physiques [1 à 7]
La triéthylamine est un liquide mobile, incolore, à forte odeur ammoniacale (seuil olfactif : 0,5 ppm).La triéthylamine est miscible à l’eau aux températures inférieures à 18 °C, mais n’est que partiellement soluble à des températures supérieures (5,5 g/100 g d’eau à 30 °C). Avec l’eau, elle forme un azéotrope contenant 13 % d’eau et dont le point d’ébullition est de 75 °C à pression atmosphérique.
Elle est miscible à l’éthanol et à l’oxyde de diéthyle, et soluble dans un grand nombre d’autres solvants organiques (alcools, cétones, éthers).
Édition : Mise à jour 2015
La toxicocinétique et le métabolisme du produit ont été récemment étudiés chez l’homme dans le cas de l’inhalation. Cinq sujets ont été exposés 4 à 8 heures à des concentrations de produit comprises entre 2,5 et 12,5 ppm [14].
Les points suivants ont pu être établis :
la fraction de produit absorbée est très importante (80 % du produit inhalé)
le taux plasmatique du produit baisse rapidement après la fin de l’exposition (demi-vie : 3,2 heures) ;
la seule biotransformation mise en évidence est une oxydation en N-oxyde de triéthylamine, vraisemblablement sous l’action d’une mono-oxydase flavine-dépendante : il n’y a pas de déalcoylation ;
une fraction seulement de l’amine est oxydée (24 % en moyenne avec de larges variations interindividuelles) ;
la triéthylamine et son métabolite sont éliminés dans les urines dont ils ne sont pas des constituants normaux (contrairement à l’éthylamine) ;
il existe une très bonne corrélation entre la concentration atmosphérique inhalée et le taux urinaire du produit 2 heures après la fin de l’exposition.
En présence de nitrite ou d’un autre agent nitrosant, la triéthylamine peut donner naissance à de la diéthylnitrosamine considérée comme cancérogène. Aucune preuve n’a été apportée de l’existence d’une telle réaction dans l’estomac, même dans le cas d’un apport de nitrite exogène.
Surveillance Biologique de l’exposition
La triéthylamine étant facilement absorbée par voies respiratoire mais aussi cutanée, une surveillance biologique peut être utile.